s -

- P

t;‘w:? . ..__w._. 52 3q.70

May 25th, 2002
QA: QA
DESIGN DOCUMENT (DD)

for

PEST Version 5.5

SAN:
STN:
SMN:
SDN:

Prepared by: : » , Date
John Doherty
Watermark Numerical Computing
~ for
Geoanalysis Group, EES-5
Los Alamos National Laboratory
Los Alamos, New Mexico

Reviewed by: Date
Zora Dash
Technical Reviewer

Approved by: Date
George Zyvoloski
Responsible Manager

Reviewed by: Date
‘ IT Software Management Analyst

Los Alamos National l,aboratory

Table of Contents

L PUTPOSE .ottt ettt a e b s bbb e sa b sae e sa e e b e s b s b ent 1
2. Implementation Standards and Environment Specifications............cocceverveevereeneeeninreeneenennenns 2
2.1 Programming Standardscccceeveiiiniiiiiiniinniiniincnrer e 2
2.2 System Software........... OO PRPRROPN 2
2.3 HATAWATE ...ttt bbb 3
2.4 Installation and Validation Methodologyc..cocevievininiiiencnininiiincenieceee e 3
3. SOEWATE SITUCLUTE ..ottt ettt ettt e st b e st e st e s sea e s e b e e sebeesmenesabaseraeas 4
3.1 Functional REQUITEMENLS.c...ooiiriiiiiiiiieeteeteetee ettt s e e re v es 4
3.2 SOftware MOUIESccueieiiriiiiieee ettt b et ettt et s 4

. 3.2 Optimization AIZOTRIMcc.ciiiiiiiiniiiiiieciicect ettt sre e 8
3.2.1 Modes of Operation.........ccccccueuuee. heerereetis ettt st e bbb s s n sttt s e s nenanes 8
3.2.2 Parameter Estimation MOdEc.cocuerierierieniiiiiccereneneeresee et 9
3.2.3 Predictive ANalysis MOAEccoovuieeieiiieeieecieereeeee st saeesa e ae e sveeneas 9
3.2.4 Regularization MOME.........coveoueeerieiiniinrinenresteneetereeee et sae st stessesaee s ereseessaeneens 9

3.3 Calculation Of DEIVALIVES.....ccceurueuirieuerereirirsesesiesesesseetsessesseseneesessesesesssssessssessssssssssesesesens 9
3.3.1 Generalccoooveeeiriiiiiiceee ettt eteett e te e ettt e et et et e e st et atesae e st e beereeenaennas 9
3.3.2 Finite-Difference-Calculated Derivativesc..ccoecvereeriniiiinnirentenienieneneeceneneenns 10
3.3.3 EXternal DEerVAtIVESivieiiiiiiiiiiicietecc ettt sttt ettt nas 12
3.3.4 PEST-t0-Model MESSAZINGccveoueeririiieieneietetinte ettt sttt ettt bessaeans 13

3.4 Upgrading the Parameter Set..........cocooviiiiiiiiiiiiiiiiieiierer et 15
3.4.1 Upgrade Formulae.............cccccocoevviiniininnninenne vt saeesreesreeenneenns 1D
3.4.2 The Marquardt Lambda...........ccccoviiiiriiniiiieieicneecieeecee et 16

3.5 Selection of Regularization Weights..........cccceceeene. eeesiitemsssetiessiesseteasntessasersassatesassoresnse 16
3.6 Termination CIILETIAc.cocvivierieeeieririeereeteteteste et et et besatestesbe st s ae e bt s besaeebee s ensesbasbaesseses 17
3.7 Structure of an Optimization Algorithm ..o, 17
3.8 PEST-Model INterface.........c.cccvuiveriicieinenieieiecreeenecreeeesreeve e SN 20
3.8.1 Model INPUL FIIES ..ottt 20
3.8.2 Model OULPUL FIlES....c..ccuiirieiiiiieceiiieecre ettt v sttt aas e sae e nenan 23

3.9 Restarting a PEST RUN.....cc.cooiiiiiiiiiiiicectctecteres ettt et 27
3.9.1 DAtA STOTAZEcvveuiieiiiniirreiieeie ettt et e e s sbe st e s besatesbtesbaesbesasesbeebaerbaessasssenssensns 27
3.9.2 Restarting at the Beginning of the Current Optimization Iterationc.ccoevveverenne. 27
3.9.3 Restarting at the Location of Latest Jacobian Calculation................ccecevveeeicieieneenennn. 27
3.10 Parameter Change LIMILSccooviiriiiniieriieniiee et enre st sieeeteeseeesneesreesaseessaeeseesneeenns 28
3.11 User-Intervention FUNCHONALILYccovuiiiiiiiiiiiiniiciic e 28
3.11.1 Design ConsSiderations...........ceccrertrerereeieneeineriesseteeeresiesteeesesseeesessessessssessessesasses 28
3.11.2 The Parameter HOId FIlecceciviiiieinirinienieteiteseeeeeeve et 29
3.12 Parameter Transformations and LinkKagescccocvevveviereeineeiencseseere et 31
BU12.1 GENETAL ...ttt e et e st e seatteesbaesetaeseateesareaens 31
3.12.2 Log TransfOrmMation.............ccuvuereriruiniereninieninieisieteiei ettt es e esens 32
3.12.3 FiXed PaArametersc.coueouiiiriieieniiieieerieie et sie ettt ettt et sa et et se b e nnesennas 32
3.12.4 Tied Parameters.......cccoueeiiuiriiriirieieisieieceie st te et see e et sa et seteebe st essensesenes 32
3.13 Parameter BOUNAScoooiiiiiiiiiciccieteee ettt ens 32
3.14 Prior INfOrMAtiONccoiiiiiiiiiiiccrtetc ettt b e s aeebaeaens 33
3.15 ODBSEIVALIONS......cveuiuiiiiriniieretiit ettt sttt et a ettt s et ae s an s esesesessssasasnane 33

PEST v5.5 Software Design Document 77?7?27
3.15.1 General ...t et L 33
3.15.2 ObServation NAIMEScocciiiiiiiiiiiireiter ettt ete e seeste e et e b e b e st e nananeans 34
3.15.3 ODbSErvation GIOUPS.......cccceerieiruiirrterieeereerteesreesseesttasteesbeassesenesssaesssesssesssesssasssassssases 34
3.15.4 Observation WEIZhLSccooiiiiiiiiiiiiiieicieertciec ettt 34
3.15.5 Observation Covariance Matrixcoceceeeerueuennnes etrtere ettt ettt 34
3.15.6 Predictive ANALYSIS.....ccicrieriieriiiieiiieniieeie ettt eeteeebeeste s saesaeesasessseesseesssessessssannees 35
3.15.7 REGUIATIZALION ..ttt ettt sttt et ettt 35
3.16 Precision........cccoeivnnens ST bbbt e et neene 36
3.17 Paralle] PrOCESSINGcccceiiieiiiiiiierieeteneesteritstee e sie et see st este e esesaesstesanenseeseensensessnensas 36
3.17.1 Design ConsSiderations.........cc.ccueieirieterierrenienieteiesteseesiessenseseeseesesssesaeseessesesssesesianes 36
3.17.2 S1aVE PIOZIAMScuiiiiiieiiiieteircrecite ettt sttt be s s b s b e sbesba s 37
3.17.3 Communication between PEST and its Slavesccccoevviiniiiciiiienciienniiiniieeieen, 38
3.17.4 The S1ave Programc..ccccooceieienirieniiniinieeee ettt ess st e e 39
3.18 Utility and Checking Programsc.ccovceeeveeiienieniiinieesieceeeeeeeeessecveen e 39
3.18.1 Design Considerations...........cccceeveerrereresieensirenesennen, eeterer ettt b e s bt enarers 39
3B 2 TEMPCHEKoooiiiiiiiiiieiterre ettt ettt et 40
BB INSCHEK ...ttt ettt ettt et st sas bt s st ebssbe e b e sbbeabesaeesaesaeanbenns 40
BIBA PESTCHEK ..ottt sttt et ettt bbbt be st e sba e aesbesaaeneas 40
3185 PESTGEN ...ttt e40
BUAB.O PARREDP. ...ttt ettt ettt ettt st ae s FURT 3 I
BIB.T JACWRIT ...ttt ettt ettt s ve e sae st e 41
3188 PARZPAR ..ottt st e s VO 41
4. System Inputs and OULPULS.........coveeuiriiiiiiiniiniicce et vt rese e esaebnen 44
4.1 PEST INPUL FIIES .vveveiniieieiieeee ettt sttt sreses bttt r e st resnaennesbaas 44
4.2 PEST OUPUL FIIES......ccvioiiiiiiiiiiiceetcteirecst ettt et 53
4.2.1 Generalcoooervieririiireiinene e ceette st et te e te et testenrenteenrneneesneses D3
4.22RUNRECOTA FIl ..ottt e D 3
4.2.3 Parameter Value File ... 61
4.2.4 Parameter Sensitivity Fileccoociiiiiiiiiiiiiiceree e erererenaes 62
4.2.5 Observation Sensitivity Fileccooviiiiiiiiiiiiiceeee e 64
4.2.6 Residuals FIlecoueiiiiiiiiiiiiiiic ettt 65
4.2.7T MatrixX File...cocooiriiiiiiiiiee et eererereresterasestesaesteraneseenes 66
4.2.8 Run Management Record File........ccocccovivviennnnnen. et 67
5. USET INETTACESeovetiereicctetec ettt ettt et bbb bbb e 70
S5.1Input Data........cccivviiiiiiiniiiiiiii e e 70
5.2 ComMMANA LINE ..coiiiniiiiiiiiieeie ettt et ebe e 70
5.3 User INterventionccceviriiiiiiiniiiiniiiieiicncnnecsnesieses e e 70
5.4 Terminal DiSplay ..o 71
5.5 EITOT MIESSAEESvveueenieiteiiierie et rte st e st st e et e s st e st e st ear e s bt s e me e se et e s e e snesassesbaesneesbesnee s 71
5.6 Stopping or Pausing PEST EXecution..........ccocccoiniiviiniininiiiiniiiiiden 82
5.7 DHALOES .evvovveververereerieeeeeesesiessesaeseses s ses s eseses et assesae b s st st es s b st ensesae st st a bbb st s 82
S.BONINE HEIP ..coiiiiiiiiieetcte ettt sttt s a s bn e sra e 82
6. SYStem INEITACES.erueiviiertirieeteiee ettt sa ettt s 83
e S ECUTILY . uveeiieeiiteete e et s ettt ettt et r et e e ae s s s te e a b e e e e aa e e e seee s s ee s st e e ems e e eant e baeeasbesesbesabaeenbaesba s e 84
8. Data and Logical MOdE]coceeiriiiiinininiicicieniiicnnsiresent ettt 85
9. REFEIEIICES ...eooneiieeiieeieeiie ettt et e este e st e sabe s bae s san s e sabeseaas e s san s saresebneeeas 86

Appendix: Conversion Plan ... 87

ISP S SN

1. Purpose

The purpose of this Design Document (DD) is to comply with the requirements set out in AP-
SL.1Q Rev. 3, ICN 3 (Software Management) for development and qualification of software. The
design outlined herein is intended to comply with the requirements set out in the PEST v5.5
Software Activity Plan and the PEST v5.5 Requirements Document (RD).

w4

2. Implementation Standards and Environment
Specifications

2.1 Programming Standards

PEST and its utilities will be written in FORTRAN. The FORTRAN 77 standard will be
observed as closely as possible, with the following exceptions:-

e some variable names will be greater than 6 characters in length;

¢ some of the code will be written in lower case;

e anon-standard function call will be used to run a model from within PEST;

¢ anon-standard function call will be used to ascertain command-line arguments;

¢ non-standard function calls will be used to ascertain the date and time as part of the
methodology required to undertake parallel model runs; and

e data arrays will be dynamically allocated.

Where the FORTRAN 77 convention is not observed, the FORTRAN 90 convention will be
adhered to, except for the code required to run the model from inside of PEST and the code -
required to access command line arguments; a FORTRAN 90 standard does not exist for either
of these. Fortunately, as most compilers use an almost identical protocol for these functions, a de
facto standard exists.

It will be ensured that any non-standard code within PEST will conform to the requirements of
the FORTRAN 77 and FORTRAN 90 compilers presently used by the Geoanalysis Group.

2.2 System Software

Because of its adherence to FORTRAN coding conventions, executable versions of PEST and its
utilities will be easily generated for any operating system for which a FORTRAN compiler is
available. This includes the SunOS UNIX operating system employed on machines presently
used by personnel of the Geoanalysis Group. However executable files for the PC version of
PEST and its utilities will be provided for use with the WINDOWS 2000 operating system.
These executable files will be 32 bit WINDOWS executables. They will be capable of being run
either from the command line, or through clicking on pertinent file icons from within
- WINDOWS explorer. If desired, access to these executables can also be made available through
the WINDOWS-2000 “Start” menu by following instructions provided in the WINDOWS 2000
help system.

PEST will not be required to interact with any external software systems such as database
managers. All user interaction will take place through ASCII input and output files, which can be
edited and displayed by the user with standard text editing software.

2

2.3 Hardware

PEST and its utilities will be capable of running on any hardware and operating system for which
there are FORTRAN compilation facilities. In particular, they will run on any of the Sun
workstations presently operated by the Geoanalysis Group. A makefile will be supplied with
PEST to expedite the generation of executable files for this environment.

Executable programs supplied with the PC version of PEST will run on any computer on which
the WINDOWS 2000 operating system is installed.

2.4 Installation and Validation Methodology

Installation will consist of reading the main program and all required supporting routines and
auxiliary files into disk storage on the target platform. Validation will be achieved by executing
pre-defined problems for which valid results are available. The installation test consists of
execution of a single test problem to demonstrate that the code is executing correctly on the
target platform. The validation methodology consists of execution and verification of results
from a series of tests that exercise the mathematics of the code and all of its model and user
interface functlonahty Details of the mstallatlon and validation methodo]ogles are glven in the

PEST v5.5 Software Design Document 222727

-t

3. Software Structiire

3.1 Functional Requirements

The functional requirements satisfied by the PEST program are summarized in Table 1. The
section numbers in column 2 of this table refer to the requirements document (27722-RD-5.5-00).
The components of the program (software modules), which implement these requirements, are
listed in the third column of the table. :

Requiremen't Section Implemented by software modules -

\ Inversion Al gorithm ‘ _ 1.2 | bnderr dercic daxpy daxpy dpofa dposl drvrd dscal gpread

main obgprd objclc obsrd oread pgetcl prmrd prrclc prrrd
ppstop pstop,rotate, trntyp

Communication between PEST and 1.3 cmprss extjac getint getnum getnxt gettot inwrit ioctl linspl
an existing simulation model ‘ lowcas model numrd outrd parnam pestmess remchar shiftl
: spacesub tabrem tabrep upcas whichl wrtsig zinctest

| Screen and file output 14 ffopen prmsav prmwrt psiwrt psterr stopress stperr wrtall

wrtfin wrtmat

User intervcﬁtion ' 1.5 hldread main ppause pstop pstops;‘ punpause
| Statistical calculations 1.6 main tred?2 tqlé wrtfin
Predictive analysis » 1.7 main
Regularization 1.8 main optwt
Parallelization 1.9 closefile delfile doruns getsecs pinwrit poutrd pslave

slavdatl slavdat?2 slavdat3 sstop wait

Utility Programs 1.10 allsam illins illprr illsgn inschek jacwrit lohi mkrtio par2par
parchk parrep pestchek pestgen prmchk prrchk rderr
tempchek wrterr wrtrl zroneg zroone

Table 1. Functional Requirements of the PEST program..

3.2 Software Modules

Table 2 lists the modules used by PEST, together with a brief description of the role of each.

Ty s m A sl

Module name

Role

allsam Checks whether two prior information equations contain the same information.
bnderr Checks that array dimensions do not exceed maximum dimensional bounds.
closefile Closes a file and checks that it is properly closed. »

cmpress Compresses instruction set to minimum memory for efficient internal storage.
daxpy Calculates constant times a vector plus a vector.

delfile Deletes a file ar;d checks that if is properly deleted.

derclc Carries out finite-difference derivatives calculation.

domnsl Organizes carrying out of parallel runs.

dpodi Calculates determinant and inverse of positive definite matrjx.

dpofa Factors a bositive deﬁ;lite matrix. |

dpo.fl ' Solves Ax:b where A is positive definite.

drvrd Reads information from PEST control file pertaining to derivatives calculation.
dscal Computes determinant of é positive; definite matrix.

extjac »Reé'ds the “derivatives file” supplied by a model if this is available.

[fopen Opens a file.

getint Retrieves next instruction line from internal storage.

getnum Retrieves the numerical .par-t of an instruction.

getnxt Retrievés the next instruction on a specific instruction line.

getsecs Obtains elapsed seconds for run.

gettot Determines exact position occupied by a number in an instruction.

gpread Reads a line of derivative data from PEST control file.

hidread Reads and processes data in parameter hold file.

illins Reports an error in an instruction.

illprr Report an error in prior information.

illsgn ‘Checks for errors in the sign of prior information coefficients.

h

N . A
. ST e

G

inschek Checks a pés‘t in§tructi0n file for errofs or inconsistencies. -
AL T T PRSP A o

inwrit Writes model input files.

ioctl Prepares for reading an instruction set.

Jacwrit Reads a binary Jacobian matrix file written by PEST and re—writés the same information
in ASCII format. :

:linspl Splits a line into space-delimited fragments.

lohi Reports whether a value is too low or too h.igh.

lowcas Convgrts a character strjng to lower case.

main The PEST main prograin; carries out much of the numerical work involved in parameter
estimation and predictive analysis.

mkrtio Assists in checking the integrity of prior information.

model Runs the:model.

numrd Reads a number from part of a character string.

obgprd Read; inf(;rmation pertaining to observation groups from PEST control file.

objclc Calculates current value of objective function. .

| obsrd Reads.information pertaining to observations from PEST control file.

optwt Solves for optimum regularization weight factor.

oread Reads a line of observation data from PEST control file.

outrd Reads model output files after a model ruh:

par2par Computes a “secondary” set of parameters from a “primary” parameter set based on
arbitrary mathematical relationships between the two parameter sets.

parchk Checks parameter spaces on template files.

parnam Extracts a parameter name from a string.

parrep Writes a new PEST control file using an old one, togcthef with a parameter value file.

pestchek | Checks the integrity of an entire PEST input data set.

pestmess Writes é PEST-to-model message file.

pestgen Builds a PEST control file based on a parameter v.alue file and ah observation value file.

pgetcl Reads PEST command line.

pinwrit Writes model input files to slave working directories.

6

poutrd Reads model output files from slave working directories.
ppause Allows the user to pauses PEST execution.
pread Reads a line of parameter data from PEST control file.
prmchk Checks the parameter data section of the PEST control file.
-prmrd Reads information pertaining to parameters from PEST control file.
prmsay Saves optimized parameter values.
prmwrt Writes current parameter value to a space.
‘prrchk Checks all prior information in a PEST control file.
prrcle Calculates current value of prior information equations.
prrid Reads information pertaining to prior information from PEST; control file.
-p;viwrt Records current value of objective function.
pslave PEST slave program.
psterr Writes a PEST ef’ror message.
ppstop | Handles premature cessation of execution on encountering an error condition.
pstopst Allows the user to terminate PEST execution with a statistical printout.
punpause Allows the user t(; re-commence PEST e;(e.cution after a pause.
| rderr Writes an error message pertaining to an inability to read a nl;mber from a model output
' file. .
remchar Removes a specified character frorﬁ a string.
rotate .Rotates a covariance matrix to align it with the directions of its principal components.
shiftl Left-justifies a string.
| slavdatl Reads initial part of run management file.
slavdat2 Reads second part of run management file; looks for slaves.
slavdat3 - Reads optional third part of run management file.
spacesub Substitutes a specific character for spaces i_n a string.
sstop Prints message to screen when PSLAVE stops running.
stopress Detects message from user to pause or resume execution.
stperr Prepares formatting of a PEST error message.
7

10

-

PREETCN AR AR R LA
S % oADEG R SY i 3 U

Il

Table 2. Subroutines used by PEST and its utilities.

3.2 Optimization Algorithm

3.2.1 Modes of Operation

PEST will operate with existing models, communicating with these models through their own
input and output files, and running them through system calls whenever it needs to know the
values of certain model outcomes based on a current set of parameter values.

PEST will operate in three different modes, these being:-

e parameter estimation mode,
e predictive analysis mode, and

tabrem Removes tabs fzom a string. o

tabrep Replaces tabs in a string by spaces while mainéaining formatting.

tempchek Checks the integrity of a template file.

tred2 Reduces real symmetric matrix to tridiagonal form.

1ql2 , Computes eigenvalues and eigenvectors of matrix.

trntyp Ascertains transformation type of each parameter.

upcas Converts a string to upper case.

wait Waits a user-specified time before further processing.

whichl Determines the index of a parameter or observation from its name.

wrtall Records all input information on run record file.

wrterr Formats and writes a PESTCHEK error message.

wrifin | Calculates statistics and completes writing of run record file at end of PEST run.

wrtmat . Writes the matrix file comprised of the covariance matrix, correlation coefficient |
matrix, and eigenvalues/eigenvectors of the covariance matrix.

wrtrl Writes a real number to a character string.

wrisig Writes a number into a restricted space with maximum precision. ‘

zinctest Ensures that an incremented parameter has a different value to unincremented parameter
when written to model input file.

zroneg Writes an error message pertaining to a number which should not be zero or negative.

zroone Writes an error message pertaining to a number which should be between zero and one.

/1l

e regularization mode.

The operation of these modes is now described.

3.2.2 Parameter Estimation Mode

Used in this mode, PEST will minimize the sum of weighted squared differences between model
outputs and corresponding field or laboratory measurements using the Gauss-Marquardt-
Levenberg (GML) method, ‘as documented in texts such as Bard (1974), Mikhail (1976), Nash
and Walker-Smith (1987) and Koch (1988). The sum of weighted squared residuals is referred to
as the “objective function”.

3.2.3 Predictive Analysis Mode

When operated in this mode, PEST will maximize or minimize a key model prediction while
simultaneously ensuring that the discrepancy between model outputs and corresponding field
measurements (i.e. the objective function) when the model is run under historical conditions
remains below a user-specified threshold. The methodology will be based on that presented in
Cooley and Vecchia (1987) and Vecchia and Cooley (1987).

3.24 Regularization Mode

When operated in this mode, PEST w1ll minimize a “regularization objective function” (normally
calculated as the sum- of weighted squared - differences between certain simple functions of
spatially-dependent parameter values and corresponding idealized values for these functions
based on geostatistical, smoothness or other presumptions), at the same time as it ensures that a
“measurement objective function” (the sum of weighted squared differences between model
outputs and corresponding field measurements) remains below a user-specified threshold. The
theory underlying the algorithm implemented in PEST will be similar to that outlined in de
Groot-Hedlin and Constable (1990).

3.3 Calculation of Derivatives

3.3.1 General

Though achieving different aims, the algorithmic bases of all of PEST’s modes of operation will
share certain mathematical similarities. Implementation of all of these modes will require that
parameter values be iteratively improved on the basis of a set of successive linearity assumptions
from initial parameter values supplied by the user. Linearization of the parameter estimation,
predictive analysis and regularization problems will be achieved through representing the action
of the model by a “Jacobian Matrix”, i.e. a matrix whose elements are' comprised of the
derivatives of every model output for which there is a complementary observation with respect to
every parameter whose value can be adjusted through the optimization process.

PEST will obtain parameter derivatives in either of two ways; both of these ways of obtaining
derivatives will be possible within the one parameter estimation process undertaken by PEST.

The first method of obtaining parameter derivatives willb_ require that PEST calculate derivatives
of model outputs with respect to adjustable parameters by Varying each such parameter in turn
and undertaking a model run on the basis of the incrementally-varied parameter. Derivatives of
model outputs with respect to each varied parameter will then be calculated by finite differences
in one of four possible ways. Selection of the appropriate methodology for a particular case will
be at the discretion of the user; however, as is discussed below, PEST will have provision to
switch from a less accurate to a more accurate methodology when it detects the need for greater
precision in derivatives calculation during the course of the optimization process.

The second method of obtaining parameter derivatives available to PEST will be for these
derivatives to be calculated internally by the model and provided to PEST in an appropriately
formatted ASCII file. Where this is possible it will have the following advantages:-

1. Model-calculated derivatives are often more accurate than those calculated by the method
of finite differences; in some parameter estimation contexts, this will increase the
efficiency of the inversion process undertaken by PEST.

2. A model can often calculate derivatives internally faster than PEST can calculate them
externally through finite differences. In these circumstances, use of PEST’s “external
derivatives functionality”, will result in greater overall PEST execution speed..

The use of both of these methods of derivatives calculation will now be discussed in_greater
detail. In the following paragraphs the term “current parameter values” will refer to the parameter
values being used by PEST at the current stage of the iterative process by which optimized
parameter values are calculated from initial parameter values supplied by the user.

3.3.2 Finite-Difference-Calculated Derivatives

3.3.2.1 Forward Differences

Using this method of derivatives calculation, each parameter will be varied upwards from its
current value by an increment calculated by PEST on the basis of a user-supplied set of variables
which govern derivatives calculation. For a particular model outcome for which there is a
corresponding field measurement, the derivative of that output with respect to the incrementally-
varied parameter will be calculated as the difference in model outputs calculated on the basis of
the incremented and current parameter value, divided by the difference in parameter values (i.e.
by the parameter increment).

3.3.2.2 Parabolic Method

Where necessary, derivatives with respect to a certain parameter will be calculated on the basis of
three model runs instead of two in order to achieve greater precision. Two of these runs will be
undertaken on the basis of parameter values which are slightly different from the current
parameter value; normally, one of these runs will be undertaken with the parameter incremented,
while the other will be undertaken with the parameter decremented from its current value. The
third model run (common to all parameters) will be that undertaken on the basis of current
parameter values. Parabolic interpolation will then be undertaken between the three sets of model

10

/3

outputs generated on the basis of the three parameter values. The derivative at the current
parameter value is then calculated on the basis of a parabolic interpolation between these model
outputs.

3.3.2.3 “Outside Points” Method

This method, too, will rely on the existence of model outputs calculated for a parameter which is
incremented, and then decremented, from its current value. However in this case only two points
will be used in calculating the derivative of each model output with respect to that parameter, viz.
the model outputs corresponding to the incremented and decremented parameter values. (It can
be shown that, even though only two points are used rather than three in calculating the
derivative, the fact that the parameter values used in this calculation subtend the current value
causes a more accurate approximation to the derivate to be obtained than that calculated on the
basis of the forward difference where the current parameter value is only incremented but not
decremented.)

3.3.2.4 “Best Fit Method”

This method will use three parameter values - the current parameter value together with an
incremented and then a decremented parameter value. Implementation of the “best fit” method of
derivatives calculation will require that PEST calculate a line of best fit between the
corresponding model outputs. The slope of this line will approximate the derivative.

3.3.2.5 Selection of Parameter Increments .

If the parameter increment used to calculate, derivatives for any of the above four methods is too
large, the outcome of that calculation will be a poor mathematical -approximation to the
derivative. If the increment is too-small, numerical precision will be lost through the differencing
of quantities of similar magnitude. Hence selection of the size of the derivative increment will be
a matter of some importance when using PEST.

PEST will allow the user to supply values for a number of input variables (viz. DERINC,
DERINCLB, DERINCMUL and INCTYP) which will govern the way in which parameter
increments are calculated at any stage of the parameter estimation process. Options will include
the following:-

® calculation of the increment as a proportion of the current parameter value (i.e. a “relative
increment”),

¢ use of an increment that is independent of the current parameter value (i.e. an “absolute
increment”), , .

e use of a relative increment with an absolute lower bound, and

e calculation of the increment relative to the parameter of highest magnitude within the
user-defined group to which the parameter belongs.

11

94

3.3.2.6 Switching from Two-Point to Three-Point Derivatives Calculation

PEST will allow the user to determine, on a parameter-by-‘parameter basis, whether derivatives
are to be computed using two-point or three-point derivatives calculation, or whether the
optimization process should begin with two-point derivatives calculation and then switch to
three-point derivatives calculation for a particular parameter when progress of the optimization
process begins to falter. Assessment of the latter condition will depend on PEST’s mode of
operation. When operating in parameter estimation and regularization modes, PEST will switch
to the use of three-point derivatives calculation for those parameters that the user has designated
as “switchable” if the objective function has fallen by less than a user supplied relative amount

(PEST input variable PHIREDSWH) between successive optimization iterations. When:

operating in predictive analysis mode, the switch to three-point derivatives calculation will be
made if the maximum or minimum prediction being sought by PEST is raised or lowered on
successive optimization iterations by less than a user-designated relative or absolute amount
(PEST input variables RELPREDSWH and ABSPREDSWH respectively).

3.3.2.7 Multiple Model Command Lines

In some instances (especially where the model run by PEST is actually comprised of a batch or
script file), it may be efficient for the execution path taken by the model to differ slightly
depending on whether the model is being currently run for the purpose of calculating outputs on

the basis of an upgraded parameter set, or to calculate incrementally-varied outputs on the basis;

- of the incrementally varied value of one parameter. In the latter case, gains in efficiency may be
possible if those parts of the model that do not depend on the incrementally varied parameter are’

not executed, thereby saving the CPU time required to undertake these wasted calculations. This "
may be achievable through running the model using different commands for different purposes;- .

the command used for a particular model run depending on the parameter whose derivative is
currently being calculated. :

If the PEST variable NUMCOM is set to a value greater than 1, then NUMCOM model
commands will need to be listed in the “model command line” section of the PEST control file.
A value for the DERCOM variable will then need to be supplied for each parameter in the
“parameter data” section of the PEST control file. This is the command number (with commands
counted in order of appearance in the “model command line” section of the PEST control file),
which PEST will use to run the model with the pertinent parameter incrementally varied in order
to calculate derivatives with respect to that parameter. Where three-point derivatives calculation
is being undertaken, the model will be run twice in succession using this same command.

3.3.3' External Derivatives

Where a model can calculate some or all of the derivatives of its key outputs with respect to its
parameters, it will often be better for PEST to use these model-calculated derivatives in
implementation of the GML method, than derivatives which it calculates itself using finite
parameter differences. If a model can be programmed to calculate these derivatives, and then to
write them to an “external derivatives file”, PEST will read the latter file to obtain these
derivatives. An example of an external derivatives file is shown in Figure 1.

12

/15

4 9
.00000 1707.60 34.4932 42.1234
.25066 8.79458 93.2321 23.5921
.04819 1.16448 5.34642 19.3235
.52323 0.11418 0.59235 75.2354
.21342 0.48392 9.49293 95.3459
2.49321 5.39230 0.49332 9.22934
19.4492 9.93024 0.49304 5.39234
0
4

W R = 0w

36.3444 10.4933 .59439 6.49345
95.4592 86.4234 7.4232 324.434

Figure 1. An external derivatives file.

The first line of an external derivatives file will contain two integers listing the number of
parameters and number of observations represented in the file. These must correspond to the
“number of columns and the number of rows respectively in the derivatives matrix. They must
also agree exactly with the values of the PEST variables NPAR and NOBS cited in the PEST
control file, i.e. the number of parameters and number of observations respectively involved in
the parameter estimation process. The derivative matrix will be listed next in the file.

External derivatives calculation fun.ctionality will be activated through the provision of a non-
zero value for the variable JACFILE which will reside in the “control data” section of the PEST
control file. In this case the PEST control file must contain a “derivatives command line” section

comprised of two data lines. The first of these two lines will be the command which PEST will -

use to run the model for the purpose of derivatives calculation. The second line will contain the
name of the file to which the model w__ill record the derivatives which it calculates, that is, the
external derivatives file. (This will be the PEST variable EXTDERFLE.)

- 3.3.4 PEST-to-Model Messaging

As is described elsewhere in this document, PEST’s principal means of communication with a
mode] will be through the model’s own input and output files. However sometimes it will be
possible to achieve gains in efficiency through more sophisticated communication between PEST
and the model. Such gains will be principally achieved through the optimization of derivatives
calculation either through having these directly calculated by the model itself, or through
allowing the model to adjust its behavior in accordance with the parameter whose derivative is
being currently calculated by PEST using finite differences.

As has already been discussed, PEST will have the capacity to run the model using different
commands in order that the model can vary its behavior in accordance with the purpose of its
current run. However PEST will provide an alternative means of communication with a model,
this being through a “message file” which will provide the model with enough information for it
to adjust its behavior, if necessary, in accordance with PEST’s current processing requirements.

Figure 2 shows an example of a PEST-to-model message file.

13

b

derivative_increment .
-2 L Looenat
4 20 X
hcondl 5.005787 1
hcond?2 9.850230 0
" storl -5.660591 -2
stor2 8.257257 -10000

Figure 2. A PEST-to-model message file, pest.mmf.

The first line of a message file will contain a character string which provides information on the
purpose of the current model run. The various strings Wthh will be used by PEST are as
follows:-

forward_model_run

This string will inform the model that it is being run either to test a parameter upgrade, or as the
first model run of the optimization process.

derivative_increment

This will inform the model that it is being run as part of the finite-difference derivatives
calculation process undertaken by PEST.

-
&

external_derivatives ‘ s

The model is being run in order to write an external derivatives file.

If the character string on the first line of the PEST-to-model message file is
“derivative_increment”, then the integer on the second line of this file will be significant. A value
of n for this integer will indicate that the model run is being undertaken with the value of the n™
parameter incremented for the purpose of calculating derivatives with respect to that parameter
by forward differences, or as the first of two runs by wh1ch derivatives will be calculated using

central differences. A value of -n will indicate that the n™ parameter is currently decremented in

the second of two runs undertaken for the purpose of derivatives calculation by central .

differences.

The third line of the message file will list the number of parameters (PEST variable NPAR) and
number of observations (PEST variable NOBS) involved in the parameter estimation process.
Following this will be NPAR lines of data with three entries on each line. The first entry on each
line will be a parameter name (up to 12 characters in length). Then will follow the value of that
parameter used for the current model run. Following that will be an integer code that informs the
model of the parameter’s status in the inversion process. A value of O will denote that the
parameter is adjustable and is not logarithmically transformed (see Section 3.12). A value of 1
will indicate that the parameter is adjustable and is logarithmically transformed. A value of -n
will indicate that the parameter is tied to parameter number n, while a value of -10000 will
indicate that the parameter is fixed.

14

/7

The PEST~to-model message file will always be named pest.mmf and will be written to the
current working directory; it is written just before each model run is undertaken. However in the
case of Parallel PEST (see Section 3.17), the message file will be written to each slave working
directory just before the pertinent model run is initiated by the slave.

3.4 Upgrading the Parameter Set

3.4.1 Upgrade Formulae

When working in parameter estimation mode, PEST will calculate a “parameter upgrade vector”
using the formula:-

u=(J'QJ +AD'JQr 1)
where:-

u is a vector whose components are the numbers to be added to current parameter
values in order to calculate updated parameter va]ues (which, hopefully, will result
in a lower objective function),

J - is the Jacobian matrix,

Q is the “cofactor” matrix, a diagonal matrix whose elements are the inverse of
' weights applied to measurements comprising the calibration data set, -

r is a vector containing the current values of residuals (i.e. the differences between
mode] outputs and corresponding field measurements),

I is the identity matrix, and
A is the “Marquardt lambda”; see the next section for a further discussion.

~ Note that in this and all other equations presented in this document, the “t” superscript indicates
the transpose of a matrix.

When working in regularization mode, PEST will use the same formula for updating parameter
values. However, during each optimization iteration it will adjust the elements of the cofactor
matrix Q in order that the weights applied to the “regularization observations” are such as to
guarantee that the “measurement objective function” rises no higher than either the user-specified
upper limit for this quantity (PEST input variable PHIMLIM), or a factor (given by the PEST
variable FRACPHIM) of the current value of the objective function, whichever is higher.

 When working in predictive analysis mode, PEST will update parameter values using the
“formula:-

u=(J'QJ + Al [J'Qr - Z/2a] |)
where a is calculated using the equation:-

15

3)

2a

(1)2 @, -r'Qr+r'QJ(J'QI)'1'Qr

Zt (J IQJ)"l Z
Variables used in equations (2) and (3), additional to those used in equation (1), are as follows:-
Z represents the linearized action of the model acting under predictive conditions,

a s a variable calculated as part of the prediction maximization/minimization process,
and

@, is the user-supplied upper objective function limit (PEST input variable PDO).

To achieve maximum accuracy, PEST will optionally perform a line search along the direction of
the vector defined by u in equation (2), to maximize or minimize the key model prediction while
respecting the @y constraint. The PEST input variables INITSCHFAC, MULSCHFAC and
NSEARCH will govern PEST’s implementation of this line search.

3.4.2 The Marquardt Lambda

Both of equations (1) and (2) involve the use of the Marquardt lambda. The optimum va]uebof
this variable to be used at any stage of the optimization process will be calculated by PEST.

During each optimization iteration, after it has formulated the Jacobian matrix J, PEST will®
calculate parameter upgrade vectors using either of equations (1) or (2) (depending on its mode.

of operation) for a number of different values of the Marquardt lambda; by doing this it will be

able to determine the best value to use for this variable at the current stage of the optimization*

process. Variables governing the ‘process by which PEST selects new Marquardt lambdas for
testing in this manner, and the criteria by which it decides that enough Marquardt lambdas have
been tested, will be supplied by the user with the PEST input data set (PEST input variables
RLAMBDA1, LAMFAC, PHIRATSUF, PHIREDLAM and NUMLAM). During any one
optimization iteration PEST will continue to test the effects of new Marquardt lambdas until one
of the following conditions are met:-

e the maximum number of Marquardt lambdas (NUMLAM) has been tested, -

e the relative improvement in the objective function between successive Marquardt
lambdas is less than PHIREDLAM, or

e an objective function is calculated which is less than a fraction PHIRATSUF of the
lowest objective function achieved during the previous optimization iteration.

3.5 Selection of Regularization Weights

When working in regularization mode, PEST will have an additional task to perform during each
optimization iteration in that it must calculate a “regularization weight factor”; this is the factor
by which the weights associated with all “regularization observations” will be multiplied in
order to guarantee that the “measurement objective function” (i.e. the sum of squared weighted

16

/9

differences between model outputs and actual fleld measurements) is raised no higher than the
threshold PHIMLIM.

The regularization weight factor will be calculated using an iterative procedure based on
linearization of the problem at the current parameter values. PEST input variables which will
govern the operation of this iterative solution process will be named WFFAC (factor by which
the weight factor is initially adjusted during thls process) and WFTOL (the iterative solution
convergence criterion).

3.6 Termination Criteria

The outcome of every optimization iteration undertaken by PEST will be an upgraded set of
~ parameter values which, hopefully, will result in a lower value of the objective function than that

‘calculated during the previous optimization iteration (if PEST is working in parameter estimation
~ mode) or a higher/lower model prediction within the constraint set by @, of equation (2) (if
PEST is working in predictive analysis mode). Once PEST has decided that no more Marquardt
lambdas will be tested, it must then decide whether to proceed to another optimization iteration,
or to declare the optimization process as complete.

Termiination criteria will vary slightly between modes of operation. When working in parameter
estimation or regularization modes, termination’ criteria will be determined by PEST input
variables NOPTMAX, PHIREDSTP, NPHISTP, NPHINORED, RELPARSTP and NRELPAR.
PEST will terminate execution if any of the following criteria are met:-

e over the last NPHISTP optimization iterations, the objective function has been lowered
"~ by a relative amount of no more than PHIREDSTP '

e NPHINORED optimization iterations have elapsed since the objective function was last
lowered,

e the value of no parameter has been altered by a relative amount of more than
RELPARSTP over the last NRELPAR optimization iterations, or

e NOPTMAX optimization iterations have been carried out.

When working in predictive analysis mode, termination criteria will be determined by the input
variables NPREDNORED, ABSPREDSTP, RELPREDSTP and NPREDSTP. If the value of the
key model outcome which PEST is attempting to maximize or minimize within the ®, constraint
changes by no more than an absolute amount of ABSPREDSTP or a relative amount of
RELPREDSTP over NPREDSTP optimization iterations, or has not been raised/lowered over the
last NPREDNORED iterations, PEST will terminate the optimization process.

3.7 Structure of an Optimization Algorithm

Figure 3 illustrates the steps to be taken by PEST during each optimization iteration. PEST’s first
task during an optimization iteration will be to compute the Jacobian matrix. To do this, PEST

- will need to-run the model with which it is working at least as many times as there are adjustable -

17

20

parameters. Where three-point derivatives calculation is employed, two model runs for each
adjustable parameter will be required: Alternatively, if PEST’s external derivatives functionality
is invoked, PEST will obtain model-calculated derivatives by reading the external derivatives file
generated by the model.

If PEST is working in regularization mode, it will then calculate the optimum regularization
weight factor to employ for that particular optimization iteration. Once this has been calculated
PEST will then calculate a parameter upgrade vector on the basis of the current Marquardt
lambda, and will run the model in order to calculate an objective function on the basis of the
upgraded parameter set (as well as the value of the key model prediction if it is working in
predictive analysis mode). It will then lower the Marquardt Lambda, calculate a new parameter
upgrade vector and undertake another model run in order to calculate the objective function
corresponding to this new parameter set (and the key model prediction if working in predictive
analysis mode). PEST will then continue to test the effects of new Marquardt lambdas (lowering
it if possible, but raising it if necessary) until one of the conditions discussed above for
terminating the testing of further Marquardt lambdas has been achieved. ‘

If, for a particular optimization iteration, there are any parameters for which derivatives are
currently being calculated using forward differences, but for which the user has indicated that one
of the three-point methods is to be used if there is an insufficient improvement in the objective.
function, PEST will then test whether the objective function improvement-has been poor enough
to justify making the switch to three-point derivatives calculation. If so, it will set a flag so that:.
all future Jacobian calculations will employ three-point derivatives calculation for such’
parameters, and will then proceed to the next optimization iteration. Otherwise it will check
whether any termination criteria have been met. If not, it will then begin the next optimization
iteration. “

18

STy

21

Start of optimisation process or previo_us optimisation iteration

>

y

Calculate Jacobian Matrix
(run model at least once for each adjustable parameter
or read model-generated external derivatives file)

y

Calculate regularisation weight factor
(regularisation mode only)

l Select Marquardt lambda l

l

I Calculate parameter upgrade vector I

| Run model to test new parameter setJ

More Marquardt
lamdas?

Next optimisation iteration

Switch to 3pt
derivatives calc?

Set flags

Terminate
optimisation
process?

Record results and terminate optimisation process

Figure 3. Structure of an individual optimization iteration.

19

3.8 PEST-Model Interface

One of the cornerstones of PEST’s model-independence will be its ability to communicate with a
model through the model’s own input and output files. Thus whenever it runs the model (whether
it be for the calculation of derivatives with respect to a particular parameter, to calculate
derivatives with respect to all parameters, or to test the effects of an upgraded parameter set on
model outputs), PEST will first write a set of model input files containing the parameter values
that it wishes the model to use on that particular run. Once the model has finished running, PEST
will read those numbers from the model’s output files for which there are corresponding field or
laboratory measurements.

The design of the PEST model-interface is now discussed. Note that the discussion in this section
is restricted to communication that takes place between PEST and a model through the model’s
own input and output files. More sophisticated (and optional) means of communication involving
the use of a PEST-to-model message file and/or an external derivatives file are discussed in
Section 3.3 of this document. '

3.8.1 Model Input Files

PEST will write model input files on the basis of “templates” of these files prepared by the user.
Each such template file will be prepared by modification of a corresponding model input file. In
each of these template files, the user will identify the locations on the corresponding model input_
file at which numbers representing adjustable parameters reside. In construction of the template -
file, the user will replace these numbers by character strings that will convey to PEST both the
name of the adjustable parameter, and the space to which the value of that parameter must be
written when PEST prepares the model input file on the basis of the template file.

To illustrate the manner in which a template file is prepared from a model input file, Figure 4
shows a model input file while Figure 5 shows a template file prepared from the model input file.

20

e s

23

MODEL INPUT FILE

0.0, 20.0 resistivity, thickness:
resistivity: layer 3
electrode spacings

o o

AWM R PO
S
]

68.
100
149
215
316
464
681
1000

3, 19 no. of layers, no. of spacings
.0, 1.0 resistivity, thickness: layer 1

layer 2

Figure 4. A model input file.

21

24

ptf #
MODEL
3, 19
#resl
#res2
#res3
1.0

.47

2.15
3.16
4.64
6.81
10.0

(=Y

w
=
r—t;bmm\o

68.
100
149
215
316
464
681
1000

INPUT FILE
no. of layers, no. of spacings
#,8t1 # resistivity, thickness: layer 1
#,4#€2 # resistivity, thickness: layer 2
resistivity: layer 3

electrode spacings

Figure

The fol

its part,

22

5. Template file corresponding to model input file of Figure 4.

lowing design characteristics of a template file are apparent from a comparison of Figures

4 and 5.

The template file will begin with the characters “ptf” (for “PEST template file”), followed -

by a space, followed by a single character which will be referred to as the “parameter
space delimiter”. This character will be used in the remainder of the file to indicate to
PEST the locations to which current parameter values must be written when it writes the
model input file. This character will be user-selectable; however the user should select a
character that is used nowhere else on the model input file (a character such as “~”, “#”,
“n «@” etc. will be suitable on most occasions).

The locations on the template file where the current values of the adjustable parameters
are to be written when creating the model input file are referred to as “parameter spaces”.
A parameter space must begin and end with the parameter space delimiter. Between these
delimiters is a string (of up to 12 characters in length) denoting the name of the
parameter.

Prior to running the model, PEST will replace each parameter space with a number representing
the current value of the identified parameter. It will be the user’s responsibility when preparing a
template file from a model input file to ensure that the model’s input formatting requirements are
respected when PEST replaces the parameter space with the pertinent parameter value. PEST, for

will take the following steps to ensure that numbers are written to model input files in a

way that best serves the purposes of the optimization process:-

25

¢ Depending on the setting of the PEST input variable DPOINT, PEST will omit the
decimal point from its representation of current parameter values if this can be done
without changing the value of these parameters. This will allow an extra significant figure
to be used in the representation of the number if the formatting requirements of the model
input file are such that the space to which the number can be written is limited. In certain
circumstances, the extra significant figure may allow a particular parameter value to be
numerically distinguishable from its value when incremented for the purposes of
derivatives calculation.

e If the PEST input variable PRECIS is set in an appropriate manner, PEST will represent
parameter values using double precision protocol (if the width of parameter spaces allows
it).

e Before PEST writes a parameter value to a model input file, it will first write it to an
internal character variable using exactly the same ASCII representation of this number as
that which it will use when writing that number to the model input file. It will then re-
read that number from the character variable in order to ensure that the internal and
external representations of that number are identical. This will increase accuracy in
derivatives calculation when undertaken on the basis of finite parameter differences.

There will be no internal limit on the number of model input files that PEST will be capable of
writing on the basis of corresponding template files prior to running the model.

y

i
3.8.2 Model Output Files

Unfortunately, it will not be possible to employ the template concept in the reading of model
output files, for these can change from model run to model run. Hence PEST will read model

output files by implementing a set of instructions supplied by the user. For.a given model output .

file, the instruction set will direct PEST to those numbers for which there are complementary
field or laboratory measurements. :

Instructions will need to be prepared by the user prior to a PEST run. An “instruction file” will be
required for each model output file from which PEST is required to read one or more numbers.
An example of a model output file and a corresponding instruction file are provided in Figures 6
and 7.

23

2L

SCHLUMBERGER ELECTRIC SOUNDING
Apparent resistivities calculated using the linear filter method
electrode spacing apparent resistivity
1.00 1.21072
1.47 1.51313
2.15 2.07536
3.16 2.95097
4.64 4.19023
6.81 5.87513
10.0 8.08115
14.7 10.8029
21.5 13.8229
31.6 16.5158
46.4 17.7689
68.1 16.4943
100. 12.8532
147. 8.79979
215.. 6.30746
316. 5.40524
464. 5.15234
681. 5.06595
1000. 5.02980

Figure 6. A model output file.

24

11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
A11

pif €
@electrode@

{arl3]21:27

[arl]21:27
[ar2]21:27
[ar3]121:27
[ard]21:27
[ar5]121:27
[ar6]21:27
[ar7]121:27
[ar8]121:27
[ar9]121:27
[ar10]21:27
[arll]21:27
[arl2]21:27

[ar14]21:27
[arl5]121:27
[arl6}21:27
[arl7]21:27
[ar18]121:27
[ar19]21:27

Flgure 7. An instruction file built to read apparent resnstlwty values from the model output
file deplcted in Figure 6. = .

The PEST instruction set will include the followingifunctiona]ity:-

It will allow PEST to peruse a model outpuf ‘file., line by line, looking for a key character
string. The location of this string will then serve as a reference point for further perusal of
the file.

It will allow PEST to advance forward in a file by a user-specified number of lines.

It will allow key character strings to be used for navigation purposes within an individual
line of a model output file.

It will allow whitespace and arbitrary numbers generated by the model to serve as in-line
navigation points.

A PEST instruction file will always begin with the letters “pif” followed by a user-supplied
character, the “marker delimiter”; the marker delimiter will be used to delimit character strings in
instructions that search for such strings. These strings will be referred to as “markers” because of

their

role in providing a reference point for further reading of a model output file. The

“electrode” string depicted in Figure 7 is an example of such a character string; according to the
“@electrode@” instruction, PEST will read the pertinent model output file until it finds a line
containing the string “electrode”. It will then implement the next instruction. The marker
delimiter character can be any character that is not found in any of the character strings for which
a search must be made.

25

1%

Once a number within a model output file for which there exists a corresponding field or
laboratory measurement has been located by the “navigational component” of the instruction set,
the number will be read in one of three ways using one of three different types of instruction. In
each case the number will be named as it is read so that it can be linked to a measurement value
recorded in the PEST control file (see later). The three ways in which a number will be read from
the model output file will be as follows:-

e through demarcation of the character positions within the model output file between
which the number lies;

e through demarcation of the approximate character positions between which the number
lies (PEST will then define the exact extent of the number itself);

e through definition of the number’s Jocation as the next non-whitespace string following a

particular navigational item.

Table 3 provides the list of instructions which will comprise the PEST instruction set, together
with a brief description of the role of each. g

Instruction Example Operation

Line advance L3 Advance through the model output file by the supplied number of
lines. ' ’

Primary marker $SFLOWS Advance through the model output file line-by-line until the supplied
string is found.

Secondary marker $FLOWS Advance along a particular line of the model output file until the
supplied string is found.

w whitespace Advance along a line until a tab or space is found.

!dum! dummy Advance to the end of the next number occurring on a line of the

observation model output file.
tab 32 Advance to the indicated character position on a line of the model

output file.

fixed observation

[obs1]13:30

Read the named model output from between the designated character
positions on the current line of the model output file.

semi-fixed observation | (obs1)20:30 Read the named model output from between the designated character -
positions; however the width of the character interval can be
expanded if necessary.

non-fixed observation | lobsl! Read the named model output as the next number on the current line .

of the model output file.

Table 3. List of instructions to be used by PEST.

Two types of marker are referenced in Table 3. Where any line of an instruction file begins with
a marker, then PEST will read the model output file until it finds a line containing the marker

26

29

string; this type of marker is referred to as a “primary marker”. However where a marker follows
other instructions within a single instruction line, then that marker is used for navigation within
that line only; PEST will not read further lines of the model output file to find the marker. This
type of marker is referred to as a “secondary marker”.

There will be no limit to the number of model output files that PEST will be capable of reading
on the basis of corresponding instruction files after it has run the model.

3.9 Restarting a PEST Run

3.9.1 Data Storage

At the end of every optimization iteration PEST will record the Jacobian matrix on a binary file
(the “Jacobian matrix file”). It will also store, in another binary file (the “restart file”), the current
values of all variables involved in the optimization process.

3.9.2 Restarting at the Beginning of the Current Optimization Iteration

If PEST execution is interrupted, PEST will be capable of being re-started using a special
command-line switch (i.e. “/r””) that will instruct it to re-commence execution at the beginning of
the optimization iteration at which ‘its execution was interrupted. When re-started using this
switch, PEST will read some of its data through its normal input files, but will then read the
binary “restart file” for the remainder of its data; this data will include its current optimization
iteration number, current parameter values, and much of the history of the optimization process
up until the time of interruption of execution. PEST will then re-commence execution at the
beginning of the current optimization iteration as read from the restart file. Note, however, that
when re-started in this manner it will not read the Jacobian matrix file recorded on the previous
PEST run. Hence it will not be able to recommence executlon at any place other than at the
beginning of the latest optimization iteration. »

3.9.3 Restarting at the Location of Latest Jacobian Calculation

If restarted with another command-line switch (i.e. the “fy” switch), PEST will re-commence
execution of a previous run at the point at which it had last finished calculation of the Jacobian
matrix. If its execution was previously interrupted while testing the effects of different Marquardt
lambdas on the objective function, it will thus re-commence execution in the same optimization
iteration as that in which its previous execution was interrupted. However if, when it was
previously halted, it was undertaking model runs for the purpose of filling the Jacobian matrix,
then re-commencement of execution at that point at which it had most recently filled the
Jacobian matrix will take it back to the previous optimization iteration.

When re-started using the “/j” switch, PEST will read the binary Jacobian matrix file, as well as
the restart file recorded during the previous run. If PEST ascertains that it must re-visit the
previous optimization iteration, it will then read the restart file pertaining to the previous
optimization iteration. (On commencement of each new optimization iteration, PEST will copy
its existing restart file to a “previous iteration restart file” before overwriting it with the latest

27

3

0]

PEST v5.5 Software Design Document ??77? : o

restart file, so that, if/fwhen execution is re-commenced, réstart files from both the current and
previous optimization iterations will be available for the use of the re-started PEST.)

Note that a user will be able to obtain a copy of the Jacobian matrix in ASCII format for his/her
own inspection by running the PEST JACWRIT utility; see section 3.18.7 for further details.

3.10 Parameter Change Limits

PEST will calculate the parameter upgrade vector using either of equations (1) or (2), the
appropriate equation depending on its mode of operation. However a user-supplied limit will be
imposed on the amount by which any parameter will be allowed to change during any one
optimization iteration. Where this limit must be enforced by PEST because the change to at least
one parameter, as recorded in the parameter upgrade vector, exceeds the user-imposed limit, the
magnitude of the parameter upgrade vector will be reduced, but its direction will be maintained.

Parameter change limits will be of two types - relative and factor; the maximum relative

parameter change will be supplied through the input variable RELPARMAX while the maximum -

factor change will be supplied through the input variable FACPARMAX. Each parameter will
then be designated as either “relative-limited” or “factor-limited” (through the PEST input
variable PARCHGLIM). The user-supplied relative limit (i.e. RELPARPMAX) will apply to all
relative-limited parameters. The user-supplied factor limit (i.e. FACPARMAX) will apply to-all

factor-limited parameters. If a parameter is designated as relative-limited, then the magnitude of

its change relative to its current value will be limited. If it is designated as factor-limited, then the
ratio of its new value to its old value (or the reciprocal of this) will be subject to the user-
supplied factor limit. -

'3.11 User-Intervention Functionality

.3.11.1 Design Considerations

The most time-consuming part of the optimization process undertaken by PEST will -be
computation of the Jacobian matrix, for PEST will need to run the model at least as many times
as there are parameters to be estimated. Where model run-times are large, this may require a
considerable amount of CPU time. Even when employing PEST’s external derivatives
functionality whereby the model calculates derivatives itself, the calculation of these derivatives
is still likely to be a CPU-intensive procedure.

Once the Jacobian matrix has been filled, PEST will calculate different parameter upgrade
vectors using equation (1) or (2) based on different values of the Marquardt lambda. In each of

equations (1) and (2), the matrix that PEST must invert to calculate the parameter upgrade vector.

is referred to as the “normal matrix”. If PEST encounters any difficulties in inverting this matrix,
it will automatically raise the Marquardt lambda (thus ensuring a degree of diagonal dominance),
and attempt the upgrade calculation again. :

If one or a number of particular parameters are more insensitive than the rest, or if two or more
parameters are very highly correlated with each other (meaning that they can be varied together
in a certain relationship with almost no effect on the objective function), then it is possible that

28

“

34

the normal matrix will be nearly singular. This condition will lead to gross amplification of
numerical errors, and hence to computation of a parameter upgrade vector which may be far from
optimal. Parameter insensitivity can also lead to a situation where one of two relatively

insensitive parameters need to change by a large amount to incur any effect on the objective.

function. PEST may thus calculate large changes for these parameters in the parameter upgrade
vector. However by limiting changes to these parameters to those enforced by the maximum
factor and relative change limits, while at the same time maintaining the direction of the
parameter upgrade vector, sensitive parameters (the parameters whose effects on the objective

function are greatest), may hardly change at all. Hence, during any one optimization iteration, the

objective function may improve very little. PEST may then “trip” into three-point derivatives
calculation earlier than it should (if derivatives are calculated using finite parameter differences),
further lengthening the overall optimization process.

PEST will write to the screen, to its parameter sensitivity file (see below), to its matrix file (see
below), and to its run record file (see below), enough information for the user to be able to judge
whether calculation of the parameter upgrade vector could have been improved if one or a
number of insensitive or highly correlated parameters were temporarily held fixed. Such
information will include:- :

¢ Marquardt lambda values used in the calculation of parameter upgrade vectors (if PEST
raises the Marquardt lambda rather than lowers it, the user can infer that PEST is having
difficulties in inverting the normal matrix),

. objective function values resu]tihg from the use of different trial Marquardt lambdas,
e composite sensitivities of all adjustable parameters (see below),

e the parameter covariance and correlation coefficient matrices, as well as the
eigenvalues/eigenvectors of the covariance matrix, all based on current parameter values
(see below),

¢ the name of the parameter that underwent the largest relative or factor change.

If, through a perusal of this information, the user suspects that computation of the parameter
upgrade vector was hampered by the presence of one or more insensitive or correlated
parameters, he/she will have the option of halting PEST execution, holding the offending
parameter(s) fixed at their current value(s), and re-commencing the parameter estimation process
at that point at which the Jacobian matrix was last filled. Thus the most time-consuming
component of each optimization iteration (viz. calculation of the Jacobian matrix) will not need

to be undertaken again. If it is then found that other parameters need to be held, the stopping and

restarting process can be repeated, with the extra parameters held at their current values.

3.11.2 The Parameter Hold File

At the commencement of each optimization iteration PEST will look in its current working
directory for a “parameter hold file”. This will be an ASCII file, easily written by the user using a
text editor. Lines within this file will be able to command PEST to do any of the following:-

29

N

¢ hold an md1v1dua1 parameter (1dent1f1ed by its name) at its current value,

e hold parameters whose compos1te sensitivities fall below a user-supplied threshold at
their current values,

e hold the n parameters of least sensitivity within a particular parameter group at their
current values, where n is supplied by the user,

e hold the parameters responsible for the n largest components of the eigenvector
corresponding to the m’th largest eigenvalue at their current values, where n and m are

supplied by the user, and

e alter the values of a number of PEST control variables (viz. RELPARMAX,
FACPARMAX and LAMBDA, these being the relative and factor change 11m1ts and the
*current value of the Marquardt lambda respectively).

Figure 8 shows an example of a parameter hold file while Figure 9 shows a flow chart of the
PEST user intervention process.

relparmax'l0.0
facparmax 10.0
lambda 200.0

hold parameter thick?2

hold group conduct < 15.0
hold group thicknss lowest 3
‘| hold eigenvector 1 highest 2

Figure 8. Part of a parameter hold file.

Full details of the syntax required for commands issued through the parameter hold file will be
provided in the User’s Manual. : :

30

hold parameter thickl ' ' N

33

y
PEST: calculate Jacobian Matrix

¥

PEST: record composite parameter sensitivities

¥

PEST: record matrix file

. ¢ <

PEST: read parameter hold file (if present)

Y

PEST: calculate parameter upgrade vector
using different Marquardt lambdas

Y

User. inspeci PEST screen output,
4 parameter sensitivity file and matrix file

PEST: N
next optimisation |
iteration '

" User. Could upgrade
vector be
improved?

User: terminate PEST execution

\ 4

User: create/edit parameter hold file

y

{ User:restart PEST using last Jacobian matrix

L

Figure 9. Flow chart of the PEST user-intervention process.

3.12 Parameter Transformations and Linkages

3.12.1 General

Parameters defined in template files will be designated as either adjustable, fixed or tied in the
PEST control file using the PEST input variable PARTRANS. Adjustable parameters will be

31

further designated as undergoing log transformation through the parameter estimation process, or
as undergoing no transformation.

3.12.2 Log Transformation

If a parameter is log-transformed PEST will estimate the log (to base 10) of that parameter rather
than the parameter itself. Thus the Jacobian matrix will contain derivatives with respect to the
log of that parameter, and the element of the parameter upgrade vector calculated by PEST
pertaining to that parameter will actually contain the alteration to the log of the parameter value.

3.12.3 Fixed Parameters

If a parameter is designated as “fixed”, its value will not be altered throughout the parameter
estimation process.

3.12.4 Tied Parameters

If a parameter is designated as “tied”, then it will not be estimated. Rather it will be varied
throughout the parameter estimation process in such a way that the ratio of its current value to
that of its “parent parameter” (i.e. the parameter to which it is tied) is maintained. The parent
parameter must be an adjustable parameter. Calculation of derivatives with respect to the parent
parameter will take into account the fact that at least one other parameter is tied to it. Hence
when it is incremented for the purposes of derivatives calculation, so too will be its “child
parameter(s)”. '

3.13 Parameter Bounds

PEST will require that the user supply an upper and lower bound for each adjustable parameter.
PEST will ensure that no parameter exceeds its upper bound or becomes less than its lower
bound at any stage of the optimization process. Bounds will be supplied through the PEST input
variables PARLBND and PARUBND.

If a parameter upgrade vector u calculated through equation (1) or (2) is such as to cause one or
more parameters to move beyond their limits, PEST will adjust u such that this does not occur,
placing such parameters at their upper or lower bounds. During the next optimization iteration,
special treatment will be afforded to these parameters. If the component of both the parameter
upgrade vector and the negative of the objective function gradient vector pertaining to a
parameter at its upper or lower limit are such as to take the parameter out of bounds, then the
parameter will be temporarily frozen, and the optimization problem reformulated with that
parameter fixed at its limit; hence the new upgrade vector will not result in any adjustment to that
parameter. If, after reformulation of the problem in this manner, with all such parameters
temporarily held fixed, there are parameters at their limits for which the parameter upgrade
vector still points outward from the allowed parameter domain, while the negative of the gradient
vector points inward, then these parameters, too, will be temporarily frozen. This process
continues until a parameter upgrade vector is calculated which either moves parameters from
their bounds back into the allowed parameter domain, or leaves them fixed.

32

35

The strength of this strategy is that it will allow PEST to search along the boundaries of the
allowed parameter domain for the smallest objective function to which it has access when the
global minimum of the objective function actually lies outside of the allowed parameter domain,
beyond PEST’s reach.

At the beginning of each new optimization iteration all temporarily-frozen parameters will be
freed to allow them to move back inside the allowed parameter domain if solution of equation (1)
or (2) deems this necessary. If not, the stepw1se temporary freezing of parameters will then be
repeated as described above. :

- 3.14 Prior Information

PEST will allow the user to include “prior information” in the optimization process in the form
- of preferred values for one or a number of adjustable parameters, or of linear relationships
between these parameters. If a parameter is log-transformed, any prior information supplied for
~that parameter must pertain to the log of that parameter. : .

Mathematically, prior information will be incorporated into the optimization process as a set of-
“observations”. Differences between preferred values of the prior information equations and
those calculated on the basis of current parameter values will thus constitute an.extra set of
residuals which will then be combined with the model-to-measurement residuals to compute the
overall objective function whose task it will be for PEST to minimize. Derivatives of the prior-
“information equations with respect to adjustable parameters will be included in the Jacobian
matrix for computation of the parameter upgrade vector using equation (1) or (2). However, due
-to the linear nature of each prior information equation, pertinent elements of the Jacobian matrix
will not require calculation through finite differences or need to be supplied by the model. Rather
they will be equal to the parameter factors (PEST variable PIFAC) cited in the prior information
equations.

‘The user will be required to assign a weight (see below) to each prior information equation, this

governing its contribution to the objective function, and hence the influence which it has on the
optimization process in comparison with other prior information equations and with members of
the field of_ laboratory data set. Each article of prior information must be assigned to an
observation group (see below). This will allow the contribution to the objective function by
different prior information equations (or groups of prior information equations) to be monitored
during the optimization process. Through assigning prior information equations to the special
observation group “regul”, prior information can contribute to the regularization process.

Each prior information equation will need to be assigned a name by the user (PEST variable
PILBL) of 12 characters or less in length.

3.1.5 Observations

3.15.1 General

As has already been discussed, PEST will calculate an “objective function”, formulated as the
weighted sum of squared differences between model outputs and corresponding field or

33

. , , , v

laboratory measurements; each such*différence is référred to as a “residual”. When working in
parameter estimation mode or regularization mode, PEST’s task will be to reduce the objective
function as far as possible while maintaining all parameters within their bounds. When working
in predictive analysis mode, PEST will be asked to maximize or minimize a key model
prediction, while maintaining the objective function at or below a user-specified threshold (PEST
input variable PD1).

3.15.2 Observation Names
Each observation must be assigned a name by the user (PEST variable OBSNME) of 12
characters or less in length.

3.15.3 Observation Groups

Each observation must be assigned to an observation group (PEST input variable OBGNME).
Use of these groups will allow PEST to report to its output file the collective contribution made
to the objective function by all observations and/or prior information items belonging to the

group.

3.15.4 Observation Weights

The objective function ® will be calculated using the equation:-

D = Ywr;
where:-
ri is the i residual, and
w; is the weight assigned to the i" observation.

Summation will take place over all observations and over all elements of prior information.
Where PEST evaluates the contribution made to the objective function from different groups,
summation will also take place over each group individually; PEST will then report each group
sub-total to its run record file.

3.15.5 Observation Covariance Matrix

The use of observation weights in calculating the objective function is based on the premise that
observations are independent, i.e. that the “uncertainty” pertaining to any one observation bears
no relationship to the “uncertainty” pertaining to any other observation. In practice, observation
“uncertainty” in a calibration context is determined by the level of misfit between these
observations and corresponding model outputs, i.e. by the model-to-measurement residuals
calculated at the end of the inversion process. If these residuals are expected to be uncorrelated
(as will occur in the majority of parameter estimation contexts), then observation uncertainties
can indeed be expressed in terms of individual observation weights. However if residuals are
likely to show consistency over space and/or time for certain observation types, then it may not
be appropriate to assume statistical independence for these observation types. In such cases it

34

37

may be preferable to describe the uncertainties associated with these observations using an
observation covariance matrix (or a matrix that is proportional to this matrix), rather than using a
set of individual observation weights.

PEST will allow the user the option of supplying an observation covariance matrix for one or
more user-defined observation groups. When using such a matrix the theory upon which PEST’s
operations are based (as expressed by equations 1 and 2) remains unchanged if the inverse of the
observation covariance matrix is substituted for Q (or for the subset of Q represented by the
pertinent observation group). The observation covariance matrix pertaining to each observation
group must be supplied to PEST in an ASCII file, the name of this file being recorded in the
“observation groups” section of the PEST control file (PEST variable COVFILE) adjacent to the
observation group name to which it corresponds. Figure 10 shows an example of a covariance
matrix file.

'1.0

O OB O
O O
O P O o
= O = O
P O O O
O = O O

0
0.
0

O O

Figure 10. Example of an observation covariance matrix file.

Theoretically, the observation covariance matrix file must be positive definite, and hence
symmetric. However PEST will be capable of accepting such a file as long as it is symmetric.

3.15.6 Predictive Analysis

As explained in Section 3.1.1, when used in predictive analysis mode PEST’s task will be to
maximize or minimize one particular model outcome while maintaining the objective function
(defined on the basis of all other model outcomes) below a user-defined threshold; this particular
model outcome will be referred to as the “prediction”. Like other model outcomes of interest, it
will be read (using the pertinent instruction) from a model output file; and like other model
outcomes of interest it will have a name of twelve characters or less in length. However it will be
distinguished from other observations by being assigned to the observation group “predict” as the
sole member of this group.

3.15.7 Regularization

When PEST operates in regularization mode, at least one observation must be assigned to the
observation group “regul”. Weights (or a covariance matrix) must be assigned to observations
comprising the members of this group in the same way that they must be assigned to members of
other observation groups. In many cases of practical interest the members of this group will not
correspond to actual field observations; instead they will express preferred values for
relationships between parameters based on smoothness or geostatistical assumptions. Such
relationships (if they are linear) can also be provided as prior information equations,
distinguished from other elements of prior information through being assigned to the observation
group “regul”.

Durmg each optimization iteration, PEST will compute a “regularization weight factor”. The
weights (or the inverse of the covariance matrix) assigned to all members of the observation

35

oF

group “regul” will be multiplied by this :factor in computation of the overall objective function.
The value of this factor will be such that, under the linearity assumption employed during each
optimization iteration, the “measurement objective function” (i.e. the component of the objective
function computed using all observations other than those assigned to the observation group
“regul”) will be equal to the user-assigned upper limit for this component of the objective
function (i.e. PEST input variable PHIMLIM). As the “measurement objective function” will
normally be calculated on the basis of the discrepancies between field observations and their
model-generated counterparts, calculation of the weight factor in this manner will ensure that an
upper limit is placed on the allowed misfit between model outputs and field data used in the
calibration process when attempts are made to simultaneously satisfy smoothness or
geostatistical constraints on spatial parameter distributions.

As it is not possible to derive an analytical expression for the weight factor, computation of the
weight factor will take place through an iterative procedure that will be deemed to reach

completion upon satisfaction of a user-supplied convergence criterion . (PEST input variable

WFTOL).

If the user is unable to assign an appropriate value to the PEST input variable PHIMLIM when
preparing for a PEST run, he/she will be able to request that PEST calculate a suitable value for
this variable itself from the current value of the objective function, and adjust this value as the
objective function falls. At any stage of the regularized parameter estimation process, PEST will
calculate this temporary value of PHIMLIM by multiplying the current value of the measurement
objective function by the user-supplied value for FRACPHIM. Ideally, FRACPHIM should be
between 0.2 and 0.3. In this way, the numerical benefits of regularization will be retained, even
where determination of a suitable value for PHIMLIM in advance of the parameter estimation
process is prob]ematlcal v

3.16 Precision

All calculations performed by PEST will take place in double precision.

3.17 Parallel Processing

3.17.1 Design Considerations

The most time-consuming part of the parameter estimation process will be the filling of the
Jacobian matrix. As is explained above, when model derivatives are calculated by finite
parameter differences, PEST will need to run the model at least as many times as there are
adjustable parameters. During each such model run, one parameter will be incrementally varied
from its current value. Derivatives with respect to that parameter will be calculated using a two-
point or three-point finite difference scheme.

The calculation of derivatives will be an ideal candidate for parallelization due to the fact that
each model run required to fill a column of the Jacobian matrix will be independent of model
runs required to fill other columns of the Jacobian matrix. That is, the parameters supplied to the
model for one of these runs do not depend on the outcomes of any of the other model runs.

36

3

There will also be potential for gains in efficiency to be made if the Marquardt lambda testing
process is “partially parallelized”. Although the choice of what lambda to use on a particular
model run will depend on the results of previous model runs undertaken on the basis of other
lambda values, any lambda value used by the model will be displaced from the original lambda
value used in this process by one or a number of multiples of the PEST input control variable
LAMFAC. Thus if networked computers and/or alternative processors are standing idle, nothing
will be lost, and potentially much will be gained, if these machines and/or processors are engaged
in undertaking model runs on the basis of lambda values which are related to the current lambda
value by factors of LAMFAC. Implementation of such a “partial parallelization” process can
result in significant gains in efficiency, though the gains will not be quite as spectacular as those
to be had through parallelization of the finite-difference derivatives calculation process as the
results of some of these lambda-testing runs will never be used by PEST.

3;17.2 ‘Slave Programs

PEST will allow parallelization of model runs through the agency of a number of “slave
programs” running either on the same machine as that on which PEST is running, or on different
machines to - which PEST has access through a local area network. Each of these slave programs
(named PSLAVE) will be started up (by the user) in a different working directory, the name of
this directory being provided to PEST in its “run management file” (see below). On reception of
an appropriate command from PEST, each slave program will run the model. However before it
" issues the command to a particular slave to run the model, PEST will write model input files

containing pertinent parameter values to the slave’s working directory, using template files -

residing in its-own working directory. At the completion of each model run, PEST will read
pertinent outcomes from model output files residing in the pertinent slave’s working directory
using instruction files residing in its own working directory.

‘For this parallelization mechanism to work correctly, the following conditions must be fulfilled:-

e Each slave must be capable of running the model from the machine on which it resides; in
many cases this will most easily be achieved by placing a copy of the model executable
on each slave’s machine.

- o Each slave must use a different working directory so that model input and output files
produced by the model when run under the supervision of one particular slave are not
overwritten by the model when run under the supervision of another slave.

e The working directory of each slave must be “visible” to PEST from the machine and
directory on which it is running.

e All model input files which do not contain adjustable parameters (and hence which are
not re-written by PEST prior to each model run) must be accessible by the model when
run by the slave. (In most cases this condition will be satisfied if copies of all such files
are placed within the working directories of the various slaves.)

Figure 11 schematizes the relationship that will exist between PEST and its slaves.

37

Yo

~'v " Machine #2
writes model! input files SLAVE

reads model output files [Model input files
Model output files

‘Machine #1
PEST

Template files
Instruction files

T

Machine #3
writes model input files SLAVE

reads mode! output files Model input files
Model output files

Figure 11. Schematic of the relationship between PEST and its”slaves.

Note that Figure 11 illustrates a case where three machines are involved in the parallelization
process and the slaves are run on different machines from that on which PEST is run. In many.
cases at least one slave will reside on the same machine as PEST. (PEST’s computational burden =~ %
will usually be light compared with that of the model as run by the slave.) Furthermore, where a '
machine has multiple CPU’s, it may be efficient to operate as many slaves on that machine as

there are CPU’s in order to take maximum advantage of the processing capabilities offered by

that machine. : '

3.17.3 Communication between PEST and its Slaves

To maintain generality across all computing platforms, and in order to avoid the use of third
party software, PEST will communicate with its slaves using simple “semaphore files”. The
names and roles of each of these files will be as illustrated in Table 4.

38

q1

File Written By Function

pslave.rdy PSLAVE Informs PEST that it has begun execution; also informs it of
the command which it will use to run the model.

pest.rdy PEST Informs PSLAVE that it has begun execution.

param.rdy PEST Informs PSLAVE that it has just generated model input files(s)
on the basis of a certain parameter set and that it must now run
the model.

observ.rdy - | PSLAVE Informs PEST that the model has finished execution and that it

‘ ' ' must now read the model output file(s).

pslave.fin PEST Informs PSLAVE that it must now cease execution.

pHHHHH " PEST , Used to test whether PEST has access to all PSLAVE working
directories.

Table 4. Files used by PEST and PSLAVE to communicate with each other.

3.17.4 The Slave Program

Like PES,T,{ the slave program PSLAVE will be written in FORTRAN, maintaining the same
programming standards as that outlined in Section 2.1 for PEST. Hence it will be possible to re-
compile this program for any platform using whatever FORTRAN compiler is available for that
_ platform. The only non-standard item of functionality involved in the programming of PSLAVE
will be the system call which PSLAVE will use to run the model. Fortunately, though not a
FORTRAN standard, the protocol for a system call is similar across most commonly-used
compilers. Where there are differences, compller directives can be used to select the appropriate
code segment.

PSLAVE source code and makefile (optimized for the UNIX environment) will be provided with
PEST. An executable version of PSLAVE, compiled for use on a PC running WINDOWS 2000,
will also be provided. ’

3.18 Utility and Checking Programs

3.18.1 Design Considerations

A number of utility programs will be provided with PEST in order to facilitate the construction
of some of its input files, to check that the entire input data set supplied to PEST for any
optimization run is consistent and correct, and to undertake various pre- and post-processing
tasks. Like PEST, all of these programs will be written in near-standard FORTRAN and will thus
be easily compiled for use on any system for which a FORTRAN compiler is available.
Executable versions of these utilities will be supplied for PCs running the WINDOWS 2000
operating system. A description of the role of each utility is now provided.

39

YL

3.18.2 TEMPCHEK

P

TEMPCHEK will check PEST template files.' Two levpels of checking will be provided.

At its lowest level TEMPCHEK will check that a particulaf template file obeys the correct
template syntax as set out in Section 3.8.1. The line number and description of any errors found
in the template file will be written to the screen.

If supplied with the values of all parameters cited in a template file (through a “parameter value
file” - see below), TEMPCHEK will write a model input file on the basis of the template file,
thus emulating what PEST does prior to a model run. The user can thus check that the model
input file has been written correctly. If desired, he/she can then run the model on the basis of the
TEMPCHEK -generated model input file, the ultimate test of the veracity of a template file being
that it can be used to generate a model input file that the model can read without error.

3.18.3 INSCHEK _
INSCHEK will check PEST instruction files. Two levels of checking will be provided. -

At its lowest level, INSCHEK will check that an instruction file is syntactlcally correct, reporting
the locations and natures of any errors that it finds to the screen.

If provided with the name of a model output file, INSCHEK will read the model output file using
the instruction set contained in the instruction file, recording all of the numbers which it reads
from the model output file to an output file of its own (an “observation value file””). The user can
thus verify that the instruction set contained within the instruction file is able to read the model
output file in the manner for which it was designed.

3.18.4 PESTCHEK

PESTCHEK will read a PEST control file (see below) and all of the template and instruction
files cited therein. It will check that the control file has the correct syntax and that the values for
all PEST input variables provided in the control file are within the correct range and are
consistent with each other. It will also check that all parameters cited in the control file are also
cited in at least one of the template files listed in the PEST control file, and that all parameters
cited in at least one of these template files are listed in the PEST control file. Similarly, it will
ensure consistency of observation names between the PEST control file and all of the instruction
files cited therein. It will report any errors or any inconsistencies that it encounters to the screen
in a manner that will make rectification of the problem as simple as possible.

3.18.5 PESTGEN

PESTGEN will write a PEST control file based on a set of user-supplied parameter names and
associated initial values contained within a parameter value file, together ‘with the set of
observation names and associated field or laboratory measurements contained within an
observation value file. Default values (useable in most optimization contexts) will be supplied
for all PEST control variables. In most instances a user will then be able to build his/her final
PEST control file through limited alteration of the PESTGEN-generated PEST control file.

40

43

3.18.6 PARREP

PARREP will read a PEST control file and a parameter value file produced by PEST. It will
generate a new PEST control file in which initial parameter values supplied in the original PEST
control file are replaced by parameter values recorded in the parameter value file (the latter file
normally containing optimized parameter values.). Thus it will be a trivial task to start a new
PEST run using parameter values calculated by PEST during a previous run.

3.18.7 JACWRIT

JACWRIT will read a Jacobian matrix file written by PEST. This file is recorded by PEST in
binary, rather than ASCII, format in order to save disk space in parameter estimation contexts in
which the number of parameters and observations is large. JACWRIT w1ll re-write this file in
ASCII format for easy user mspectlon

3.18.8 PAR2PAR

PAR2PAR will read an input file in which parameters. are named and are 'assigned values using
. mathematical expressions of arbitrary complexity involving numbers and/or previously defined
parameters. It will then record supplied and derived parameter values to one or a number of
model input files. This will be achieved through the use of template files, for PAR2PAR’s
protocol for writing model input files based on supplied or denved parameter values-will be
identical to that of PEST. : :

Because of its ability to manipulate parameter values in accordance :with user-defined
expressions, PAR2PAR will find a useful role as a model pre-processor in a batch or script file
run by PEST as a “composite model”. A template can be constructed from a PAR2PAR input
file. Prior to each composite model run, PEST will then provide PAR2PAR with a set of current
parameter values. PAR2PAR will then use these parameter values to calculate the values
pertaining to a “more advanced” parameter set for the use of the model. This will add
considerable flexibility to the parameter estimation or predictive analysis process undertaken by
PEST.

An example of a PAR2PAR input file is provided in Figure 12.

* parameter data

infiltl = 0.3456

infiltrat2 = 1.0453

infiltrat3 = 1.5432

infilt2= infiltl * infiltrat2
infilt3 = infilt2 * infiltrat3
* template and model input files
modell.tpl modell.in
model2.tpl model2.in

* control data

single point

Figure 12. Example of a PAR2PAR input file.

41

Uy

As the above example shows, parameters, and the relationships between parameters, will be
defined in the “parameter data” section-of a PAR2PAR inpiit file. (In Figure 12 infiltl, infiltrat2
and infiltrat3 are the names of parameters.) The “template and model input files” section of the
PAR2PAR input file will contain the names of template files, together with the names of the
model input files to which they are linked. The “control data” section of the PAR2PAR input file
will contain values for the variables PRECIS and DPOINT which will determine the protocol
used for writing parameter values to model input files. These will have an identical role to their

role in PEST (see Section 3.8.1).

Permissible operators in mathematical expressions to be used by PAR2PAR are listed in Table 5.

Permissible functions are listed in Table 6.

Operator Function of operator
+ addition
- subtraction

multiplication

division

exponentiation

exponentiation

(

right bracket

)

left bracket

Table 5. Operators to be used in mathematical expressions provided in a PAR2PAR input

file.

42

45

43

Function Role of function
abs() absolute value
acos() inverse cosine
asin() inverse sine
atan() inverse tan
cos() cosine
cosh() hyperbolic cosine
exp() exponential
log() logarithm to base e
logl0 logarithm to base 10
~sin() sine
sinh() hyperb(;lic sine
sqrt() s(;uare root
tan() tan
tanh() hyperbolic fan

Table 6. Mathematical fuilctions to be supported by PAR2PAR.

¢

Yl

4. System Inputs and Outputs -

4.1 PEST Input Files

PEST will require three types of input file, viz. template files, instruction files and a PEST
control file. If one or more observation covariance matrices are supplied in lieu of some or all
observation weights, then a set of files will also need to be supplied to PEST in each of which a
covariance matrix will be housed. All of these files will be ASCII files which should be prepared
prior to a PEST run by the user on the basis of detailed instructions to be found in the User’s
Manual (Watermark Numerical Computing, 2002). All of these files can be prepared using basic

functionality encapsulated in a word processor or text editor. No inputs will be required from -

other existing systems, applications or instrumentation.

Template, instruction and observation covariance matrix files have already been discussed. The
structure of the PEST control file is illustrated in Figure 13.

44

4

pctf

* control data

RSTFLE PESTMODE

NPAR NOBS NPARGP NPRIOR NOBSGP

NTPLFLE NINSFLE PRECIS DPOINT NUMCOM JACFILE MESSFILE

RLAMBDA1l RLAMFAC PHIRATSUF PHIREDLAM NUMLAM

RELPARMAX FACPARMAX FACORIG o

PHIREDSWH

NOPTMAX PHIREDSTP NPHISTP NPHINORED RELPARSTP NRELPAR

ICOV ICOR IEIG

* parameter groups

PARGPNME INCTYP DERINC DERINCLB FORCEN DERINCMUL DERMTHD R
(one such line for each of the NPARGP parameter groups))
* parameter data

PARNME PARTRANS PARCHGLIM PARVALl PARLBND PARUBND PARGP SCALE OFFSET. DERCOM
(one such line for each of the NPAR parameters) :
PARNME PARTIED ’

(one such line for each tied parameter; omit if no tied parameters)

* observation groups

OBGNME [COVFLE]

(one such line for each observation group)

* observation data .

OBSNME OBSVAL WEIGHT OBGNME

(one such line for each of the NOBS observatlons)

* model command line

command ‘to run model

(NUMCOM commands are required, llsted one under the other)

* derlvatlves command line

command to run model in order for it to calculate parameter derlvatlves
EXTDERFLE - .

* model 1nput/output

TEMPFLE INFLE .

(one such line for each model 1nput file containing parameters)

INSFLE OUTFLE . .

(one such line for each model output file containing observations) -

* prior information

PILBL PIFAC * PARNME + PIFAC * l1log(PARNME) ... = PIVAL WEIGHT OBGNME
(one such line for each of the NPRIOR articles of prior 1nformat10n)

* predictive analysis

NPREDMAXMIN . <
PD0O PD1 PD2

ABSPREDLAM RELPREDLAM INITSCHFAC MULSCHFAC NSEARCH

ABSPREDSWH RELPREDSWH

NPREDNORED ABSPREDSTP RELPREDSTP NPREDSTP

* regularization

PHIMLIM PHIMACCEPT FRACPHIM

WFINIT WFMIN WFMAX

WFFAC - WFTOL

Figure 13. Construction details of the PEST control file.

The PEST control file must begin with the character string “pcf”. It will then be divided into
different sections, each section containing a series of variables that affect different aspects of
PEST’s operations. Each section will begin with a header line which contains the name of the
section preceded by the “*” character, exactly as shown in Figure 13. The “prior information”,
“predictive analysis” and “regularization” sections can be omitted if they are not required. Note
that a “predictive analysis” section and a “regularization” section should not reside in the same
PEST control file, for PEST will not be able to run in both predictive analysis mode and
regularization mode at the same time.

45

43

Within each section, the values of variables will be supplied in the order indicated in Figure 13;
related variables are grouped togethier on the same ling. Efitries on each line should be space-
delimited.

Details of the variables cited in each section of the PEST control file are provided in Tables 7 to
17. A more detailed description of the role of each variable, and of the range of reasonable values
for each variable, will be provided in the PEST User’s Manual (Watermark Numerical

Computing, 2002).
Variable Name | Type Values . Role of variable
RSTFLE character | “restart” Determines whether PEST writes files containing restart
“norestart” information.
PESTMODE character “estm.)at'l on” PEST’s mode of operation for current run.
prediction
“‘regularization”
NPAR integer >0 Number of parameters cited in “parameter data “ section.
NOBS integer >0 Number of observation cited in “observation data” section.
NPARGP integer >0 Number of parameter groups cited in “parameter groups”
section.
NPRIOR integer >0 Number of articles of prior information cited in “prior
information” section. :
NOBSGP integer >0 Number of observation groups cited in “observation groups”
section.
NTPFLE integer >0 Number of template files.
NINSFLE integer >0 Number of instruction files.
PRECIS character “Zlgfll;c” Governs numerical precision with which numbers are written
to model input files.
DPOINT character “Eg":;int” Determines whether the decimal point should be omitted from
P parameter values on model input files if possible.
NUMCOM integer >1 Number of commands used to run the model.
JACFILE integer Oorl 1 if model must supply external derivatives; O otherwise.
MESSFILE integer Oorl 1 if PEST must write a PEST-to-model message file; 0
‘ otherwise.
RLAMBDALI real- >0.0 Initial value of Marquardt lambda
LAMFAC real >1.0 Marquardt lambda adjustment factor.
PHIRATSUF real : ?8 Sufficient ratio of new to old objective function to justify
) initiation of the next optimization iteration.
46

4g

> 0. . L L
PHIREDLAM | real < 8(5) If relative objective function improvement between subsequent
) Marquardt lambdas is less than this, the next optimization
iteration is initiated.
| NUMLAM | integer >0 . Maximum number of Marquardt lambdas to test on any one
optimization iteration.
RELPARMAX | real >0.0 Parameter change limit for relative-limited parameters.
FACPARMAX {real - |>10 Parameter change limit for factor-limited parameters.
: >0.0 . . .
FACORIG real <10 Used to modify calculation of relative parameter change as
) ') parameter value approaches zero.
PHIREDSWH real Z (l)g Relative objective function improvement between iterations
') below which switch is made to 3 point derivatives calculation.
NOPTMAX integer >-1 Maximum number of optimization iterations.
PHIREDSTP real < 8 1 Termination criterion: relative objective.function change
) threshold. -
NPHISTP integer >0 : Number of optimization iterations over which PHIREDSTP
applies.
NPHINORED integer >0 Termination criterion: number of optimization iterations since
objective function decreased.
>0.0 . o . _
RELPARSTP real <01 Termination criterion: relative parameter change threshold.
NRELPAR integer >0 | Number of optimization iterations over which RELPARSTP
applies. :
ICOV integer Qorl If 1, write parameter covariance matrix to matrix file during
h every optimization iteration.
ICOR integer Oorl If 1, write parameter correlation coefficient matrix to matrix
file during every optimization iteration.
IEIG integer Oorl If 1, write eigenvalues/eigenvectors of parameter covariance
: ' ' matrix to matrix file during every optimization iteration.

Table 7. Variables cited in the “control ,(}ata” section of the PEST control file.

The NOPTMAX variable sets the maximum number of ‘optimization iterations that PEST will be
allowed to carry out. If this is set to 0, PEST will run the model only once; it will then compute
the objective function, write this to the screen and to its run record file, and then cease execution.
If NOPTMAX is set to -1, PEST will calculate the objective function, Jacobian matrix and
various statistical entities such as the parameter covariance matrix and quantities derived from it.
It will then cease execution after recording these to its run record file.

47

50

Variable name | Type Valuest‘ _ Role of variable
user’s choice —
h .
PARGPNME character (< 12 characters) Name of parameter group
INCTYP character “re]atlve . Increment type for derivatives calculation.
absolute]
DERINC real >0.0 Value of parameter increment.
DERINCLB real 20.0 Absolute lower limit of parameter increment.
FORCEN character “Z}z:yz‘g,, Indicates whether derivatives will be calculated using 2
“SWitC);')”_ or 3 points, or whether PEST will start at 2 and switch
to 3-point derivatives calculation as required.
DERINCMUL | real >0.0 Multiplier for increment if 3-point derivatives
calculation is employed.
DERMTHD character “para'bohc . Indicates whether derivatives are. calculated using
outside_pts . \ . . .
“best fit” parabolic, outside-points or best-fit method if 3-point
- derivatives calculation is employed.

Table 8. Variables cited in the “parameter groups” section of the PEST control file.

Variable name | Type - Values Role of variable
, user’s choice
PARNME character (< 12 characters) Name of parameter.
, “none” “log” . . .
PARTRANS character « b s s Denotes whether parameter is adjustable, tied, fixed or
fixed” “tied
log-transformed.
PARCHGLIM character “;Z:::g;:? Type of change limit - relative or factor.
PARVALIL real problem-specific Initial parameter value.
PARLBND real problem-specific Parameter lower bound.
PARUBND real problem-specific Parameter upper bound.
PARGP charactgr ?;elr 2sc'(;1}:r)zliiet’ers) Group to which parameter belongs.
SCALE real problem-specific | Multiplier for parameter value before being written to
' model input file.
OFFSET real problem-specific | Offset for parameter value before being written to
model input file.
DERCOM integer >1 Command number used to run the model when
calculating derivatives of this parameter using finite
differences.

Table 9. Variables cited in the ‘“parameter data” section of the PEST control file.

48

sl

If any parameter is tied to another during the parameter estimation process, the “parameter data”
section of the PEST control file must also contain a list of tied parameters together with the
parameters to which they are tied.

Variable name | Type | Values Role of variable

OBGNME character ?;elr 2scch}:r);Cciers) Name of observation group.

COVFLE | character - user’s choice | Optional name of observation covariance matrix file if a
: covariance matrix is supplied for this observation group in
lieu of observation weights.

Table 10. Variables cited in the “observation groups” section of the PEST control file.

Variable name | Type Values ~ | Role of variable

’s choi .
OBSNME character | \S¢7 §cnotce Name of observation. =
(< 12 characters)

OBSVAL real problem-specific Measured value.

WEIGHT real >0.0 Observation weight used in parameter estimation process.

OBGNME character écelr ZSCLZZ;;Ziers) Group to which observation belongs.

Table 11. Variables cited in the “observation data” section of the PEST control file.

Variable name | Type Values Role of variable

model character | problem-specific | Command issued by PEST to run the model.
command line

Table 12. Variables cited in the “model command line” section of the PEST control file.

Variable name | Type Values , . | Role of variable
model character | problem-specific Command issued by PEST to run the model when it is
command line used to calculate parameter derivatives.

EXTDERFLE character | problem-specific | The name of the file in which the model records parameter
| derivatives.

Table 13. Variables cited in the optional “derivatives command line” section of the PEST
control file.

A PEST control file will require a “derivatives command line” section only if the JACFILE
variable in the “control data” section of the PEST control file is set to 1.

49

51

Variable name | Type Values i L Role of ‘\"ariab.lem)

TEMPFLE character | user’s choice Name of template file.

INFLE character | problem-specific | Name of model input file corresponding to template file.

INSFLE character | user’s choice Name of instruction file.

OUTFLE character | problem-specific | Name of model output file corresponding to instruction
file.

Table 14. Variables cited in the ‘“model input/output” section of the PEST control file.

All files cited in Table 14 will be assumed to reside in the current working directory;
alternatively, inclusion of a path in their name will allow them to reside in a directory of the
user’s choice.

Variable name | Type Values Role of variable

user’s choice
PILBL character Name of prior information item. °
(£ 12 characters) p

PIFAC real problem-specific | Factor appearing in prior information equation.

user’s choice
PARNME character Name of parameter appearing in prior information
(£ 12 characters) P PP g p

equation.
PIVAL real problem-specific | Value of prior information equation.
WEIGHT real >0.0 Weight assigned to prior information equation.

OBGNME character zz;elr 2scch]:;;i:iers) bOet;Zngv:tion group to which Pri.or information equation

Table 15. Variables cited in the “prior information” section of the PEST control file.

50

S3

Variable name Type Values o Role of variable ‘

NPREDMAXMIN iﬁteger lor-1 Indicates whether to maximize or minimize
prediction.

PDO real >0.0 @, of equation (2), i.e. upper allowable value for

objective function.

PDI1 ' real >PDO0 .| Acceptable upper limit for objective function.

PD2 real >PD1 Objective function value below which PEST tries to
maximize/minimize prediction instead of minimizing
objective function.

ABSPREDLAM real >0.0 | Absolute threshold of prediction improvement below
which to cease trying new Marquardt lambdas.

RELPREDLAM real >0.0 Relative threshold of prediction improvement below
which to cease trying new Marquardt lambdas.

INITSCHFAC real >0.0 Initial factor by which to multiply upgrade vector in
‘ line search for maximum/minimum prediction.
MULSCHFAC real >1.0 'Factor by which upgrade vector is multiplied in line
A search.
NSEARCH f integer >1 ; Maximum number of model runs to undertake in line

search for prediction maximum/minimum.

ABSPREDSWH real . >0.0 Absolute limit of prediction improvement between
. . ' optimization iterations below which to switch to 3-pt
derivatives calculation.

RELPREDSWH - | real >0.0 Relative limit of prediction improvement between
o 0 -8 optimization iterations below which to switch to 3-pt
<b derivatives calculation.
NPREDNORED integer >1 Termination criterion: maximum number of
' optimization iterations since prediction has been
raised or lowered.
ABSPREDSTP real - >0.0 Threshold value of absolute prediction improvement
below which optimization process will cease.
RELPREDSTP real 1200 Threshold value of relative prediction improvement
<02 below which optimization process will cease.
NPREDSTP integer >1 Number of iterations over which the previous two

variables apply.

Table 16. Variables cited in the “predictive analysis’ section of the PEST control file.

51

54

Variable name | Type . Role of variable

PHIMLIM real >0.0 Upper limit of acceptability of measurement objective
function.

PHIMACCEPT | real > PHIMLIM Acceptable upper limit for measurement objective
function if PHIMLIM criterion cannot be met.

FRACPHIM real <1.0 Factor by which a temporary value for PHIMLIM is
calculated from the current value of the measurement
objective function.

WFINIT real >00 Initial weight factor for regularization observations.

WEFMIN real < WFINIT Minimum allowable weight factor.

WFMAX real 2> WFINIT Maximum allowable weight factor.

WFFAC real >1.0 Factor by which weight factor is multiplied to begin
iterative weight factor solution process.

WFTOL real Zgg Convergence criterion in iterative weight factor solution

') process.

Table 17. Variables cited in the “regularization” section of the PEST control file.

When Parallel PEST is used, one extra PEST input file will need to be prepared, viz. a “run

management file”.

The structure of this file is shown in Figure 14. An explanatlon of the

variables requ1red by this file is provided in Table 18.

prf

INFLE (1)
INFLE(2)

OUTFLE (1)
OUTFLE (2)

NSLAVE IFLETYP WAIT PARLAM
SLAVNAME SLAVDIR
(once for each slave)
(RUNTIME(I),

I=1,NSLAVE)

(to NTPFLE lines,

(to NINSFLE lines,

Any lines after this point are required only if IFLETYP is nonzero; the
following group of lines is to be repeated once for each slave.

where NTPFLE is the number of template files)

where NINSFLE is

the number of instruction files)

Figure 14. Structure of the Parallel PEST run management file.

52

33

Variable name | Type Role of variable

NSLAVE integer 21 | Number of slaves.

IFLETYP integer Oorl Whether to use long or short version of run management
file.

WAIT real >0.0 Length of pause in seconds between writing a file and
| T signalling its presence.

PARLAM | integer Oorl Set to 1 if partial parallelization of the Marquardt Lambda
' search is required.

SLAVNAME character | user’s choice Name of slave.

SLAVDIR character | user’s choice Wofking directory of slave.

RUNTIME real > 0.0 Estimated rﬂodel run time in seconds on slave’s machine.

INFLE character problem—speciﬁc Name of model input file on slave’s machine.

OUTFLE character | problem-specific | Name of model output file on slave’s machine.

Table 18. Variables cited in the PEST run 5management file.

4.2 PEST Output Files

4.2.1 Gei}erél

- As was discussed above, PEST will produce a number of binary files that will endow it with
restart capabilities. These files will be read by PEST upon re-commencement of execution. Only
one of these file will be read by a program other than PEST, this being the Jacobian matrix file.
Program JACWRIT, one of the utilities supplied with PEST will re-write the Jacobian matrix file
in ASCII format if the user desires. No other external program will read these binary files.

PEST will also produce a number of ASCII files containing information that can be read by the
user and any post-processing software that the user may write. These files are now discussed.

4.2.2 Run Record File

The run record file will echo data supplied to PEST through its various input files. Once it has
read all of its input files, PEST will continue to record information to the run record file as it
progresses through the optimization process. When the process is complete, a comprehensive
summary of the outcomes of the process will be available from this file.

Information recorded on the run record file during the course of the optimization process will
include the following:-

53

50

current values of all parameters,

current value of the Marquardt lambda,

current value of the objective function,

contribution made to the objective function by different observation groups,
maximum factor or relative change undergone by any parameter,

current value of model prediction (predictive analysis mode only),

current value of measurement and regularization objective functions (regularization mode
only),

current value of the regularization weight factor (regularization mode only).

Information written to the run record file upon completion of the optimization process will
include the following:-

optimized values of all parameters,

95% confidence intervals of all parameters based on lmearlty assumption employed in
latest Jacobian matrix calculation, : :

parameter covariance matrix,

parameter correlation coefficients,

eigenvectors and eigenvalues of parameter covariance matrix,

maximum/minimum value of key model prediction (predictive analysis mode only),
objective function and contribution made to the objective function by all observation
groups, '

measurement and regularization objective functions (regularization mode only),
observations, their model-generated counterparts, and residuals,

prior information residuals, .

maximum, minimum, mean, median and standard deviation of residuals for each
observation group and for residuals taken as a whole,

correlation coefficient (calculated using the method of Cooley and Naff, 1990).

An example of a run record file, in which the format of the various items of information listed on
that file is exemplified, is provided in Figure 15.

PEST RUN RECORD: CASE manual

Case dimensions:-

Number of parameters

Number of adjustable parameters

Number of parameter groups

Number. of observations 01
Number of prior estimates :

[\CVe N SR Ve G

Model command line:-

ves

54

Y]

Jacobian command line:-

na

Model interface files:-

Templates:
ves.tpl

for model input files:
ves.inp

(Parameter values written using single precision protocol)
(Decimal point always included.)

Instruction files:
ves.ins
for reading model output files:
ves.out
PEST-to-model message file:-

pest .mmf

Derivatives calculation:-

Param Increment Increment Increment Forward or Multiplier Method

group type : low bound central {(central) (central)
ro relative 1.0000E-03 1.0000E-05 switch 2.000 parabolic
h relative 1.0000E-03 1.0000E-05 switch 2.000 parabolic

Parameter definitions:-

Name Trans- Change Initial . Lower Upper Group
formation limit value bound bound

rol fixed na 0.500000 na na none
© ro2 log factor 5.00000 0.100000 10.0000 ro

ro3 tied to ro2 na 0.500000 na - na ro

hl none factor 2.00000 5.000000E-02 100.000 h

h2 log factor 5.00000 5.000000E-02 100.000 h

Name Group Scale Offset Model command number

rol none 1.00000 ' 0.000000 1 Y

ro2 ro 1.00000 0.000000 1

ro3 ro 1.00000 0.000000 1

hl h 1.00000 0.000000 1

h2 h 1.00000 0.000000 1

Prior information:-

Prior info Factor Parameter Prior Weight
name . - information
pil 1.00000 * hl = 2.00000 3.000
piz2 1.00000 * log{ro2] + :
1.00000 * log[h2] = 2.60260 2.000

Prior Info Name Observation Group

pil group_4
piz2 group_4

Observations:-

Observation name Observation Weight Group
arl 1.21038 1.000 group_1
ar2 1.51208 1.000 group_1
ar3 2.07204 1.000 group_1l
ard 2.94056 1.000 group_1
ars 4.15787 1.000 group_1l
ar6 5.77620 1.000 group_1l
ar? 7.78940 1.000 group_2
ar8 9.99743 1.000 group_2
ar9 11.8307 1.000 group_2
arl0 12.3194 1.000 group_2

55

59

arll 10.6003 1.000 group_2
arl2 7.00419 1.000 group_2
arl3 3.44391 1.000 group_2
arld 1.58279 1.000 group_2 o
arls 1.10380 1.000 group_3
arleé 1.03086 1.000 group_3
arl? 1.01318 1.000 group_3
arls 1.00593 1.000 group_3
arl9 1.00272 1.000 group_3

Inversion control settings:-

5.0000

Initial lambda

Lambda adjustment factor 2.0000
Sufficient new/old phi ratio per iteration 0.40000
Limiting relative phi reduction between lambdas 3.00000E-02
Maximum trial lambdas per iteration 10
Maximum factor parameter change (factor-limited changes) 3.0000
Maximum relative parameter change (relative-limited changes) na
Fraction of initial parameter values used in computing

change limit for near-zero parameters 1.00000E-03
Relative phi reduction below which to begin use of

central derivatives . 0.10000
Relative phi reduction indicating convergence 0.10000E-01
Number of phi values required within this range 3
Maximum number of consecutive failures to lower phi 3
Maximum relative parameter change indicating convergence 0.10000E-01
Number of consecutive iterations with minimal param change 3
Maximum number of optimization iterations 30

OPTIMISATION RECORD

INITIAL CONDITIONS:
Sum of squared weighted residuals (ie phi) = 523.8

Contribution to phi from observation group “group_1” = 127.3
Contribution to phi from observation group “group_2” = 117.0
Contribution to phi from observation group “group_3” = 185.2
Contribution to phi from prior information = 94.28
Current parameter values
rol 0.500000
ro2 5.00000
ro3 0.500000
hl 2.00000
h2 5.00000
OPTIMISATION ITERATION NO. : 1
Model calls so far : 1
Starting phi for this iteration: 523.8
Contribution to phi from observation group “group_1”: 127.3
Contribution to phi from observation group “group_2": 117.0
Contribution to phi from observation group “group_3": 185.2
Contribution to phi from prior information : 94.28
Lambda = 5.000 ———ae>
phi = 361.4 { 0.69 of starting phi)
Lambda = 2.500 = ----- >
phi = 357.3 (0.68 of starting phi)

No more lambdas:

Lowest phi this

Current parameter values

relative phi reduction between lambdas less than 0.0300
iteration: 357.3

Previous parameter values

rol 0.500000 rol 0.500000
ro2 10.0000 ro2 5.00000
ro3 1.00000 ro3 0.500000

56

39

hl 1.94781 hl 2.00000
h2 10.4413 h2 5.00000
Maximum factor parameter change: 2.088 [h2]
Maximum relative parameter change: 1.088 [h2]

OPTIMISATION ITERATION NO. : 2
Model calls so far : 6
Starting phi for this iteration: 357.3
Contribution to phi from observation group “group_l": 77.92
Contribution to phi from observation group “group_2”: 103.8
Contribution to phi from observation group “group_3“: 121.3

Contribution to phi from prior information : 54.28
Lambda = 1.250 @ ----- > ‘ ‘
parameter "ro2" frozen: gradient and update vectors out of bounds
phi = 252.0 (0.71 of starting phi)
Lambda = 0.6250 = ----- >
phi = 243.6 (0.68 of starting phi)
Lambda = 0.3125 = ----- >
phi = 235.9 (0.66 of starting phi)
Lambda = 0.1563 ---=- >
phi = 230.1 (0.64 of starting phi)

No more lambdas: relative phi reduction between lambdas less than 0.0300
Lowest phi this iteration: 230.1

Current parameter values Previous parameter values
rol - 0.500000 v rol 0.500000
ro2 -10.0000] ro2 10.0000
ro3 : 1.00000 : ro3 1.00000
hl - - 1.41629 : - -hl 1.94781
h2 31.3239 h2 10.4413

" Maximum factor parameter change: 3.000 ([h2]
Maximum relative parameter change: 2.000 (h2]

OPTIMISATION ITERATION NO. : 3

" Model calls so far) : 13
Starting phi for this iteration: 230.1
Contribution to phi from observation group “group_l”: 29.54
Contribution to phi from observation group “group_2”: 84.81
Contribution to phi from observation group “group_3“: 91.57
Contribution to phi from prior information : 24.17

All frozen parameters freed

Lambda = 7.8125E-02 ----- >
parameter "ro2" frozen: gradient and update vectors out of bounds
phi = 89.49 (0.39 of starting phi) .

No more lambdas: phi is now less than 0.4000 of starting phi
Lowest phi this iteration: 89.49

Current parameter values Previous parameter values
rol 0.500000 rol 0.500000
ro2 10.0000 ro2 10.0000
ro3 1.00000 ro3 1.00000
hl 0.472096 hl 1.41629°
h2 34.3039 h2 31.3239

Maximum factor parameter change: 3.000 [hl}]
Maximum relative parameter change: 0.6667 [hl]

OPTIMISATION ITERATION NO. : 4
Model calls so far . : 17
Starting phi for this iteration: 89.49
Contribution to phi from observation group “group_l7: 9.345
Contribution to phi from observation group “group_2”: 34.88
Contribution to phi from observation group “group_3”: 21.57
Contribution to phi from prior information : 23.69

All frozen parameters freed

Lambda = 3.9063E-02 ----- >

57

[0

parameter "ro2" frozen: gradient and update vectors out of bounds

phi = 79.20 (0.89 of starting phi)
Lambda = 1.9531E-02 -—--- > ' S
phi = 79.19 (0.88 of starting phi)

No more lambdas: relative phi reduction between lambdas less than 0.0300
Lowest phi this iteration: 79.19

Current parameter values Previous parameter values
rol 0.500000 rol 0.500000
ro2 10.0000 ro2 10.0000
ro3 1.00000 ro3 1.00000
hi 0.157365 hl 0.472096
h2 44.2189 h2 34.3039

Maximum factor parameter change: 3.000 [hl]
Maximum relative parameter change: 0.6667 [hl]

OPTIMISATION ITERATION NO. : 5

Model calls so far : 22

Starting phi for this iteration: 79.19

Contribution to phi from observation group “group_17: 6.920
Contribution to phi from observation group “group_27": 22.45
Contribution to phi from observation group “group_3": 14.88
Contribution to phi from prior information : 34.94

All frozen parameters freed

Lambda = 9.7656E-03 ----- >
parameter "ro2" frozen: gradient and update vectors out of bounds
phi = 64.09 (0.81 of starting phi)
Lambda = 4.8828E-03 --=--> .
phi = 64.09 { 0.81 of starting phi)
Lambda = 1.9531E-02 ----- >
phi = 64.09 { 0.81 of starting phi)

No more lambdas: relative phi reduction between lambdas less than 0.0300
Lowest phi this iteration: 64.09

Current parameter values Previous parameter values
rol 0.500000 ' rol 0.500000
ro2 10.0000 ro2 10.0000
ro3 1.00000 ro3 1.00000
hi 0.238277 hi 0.157365
h2 42.4176 h2 44.2189

Maximum factor parameter change: 1.514 [hl]
Maximum relative parameter change: 0.5142 [hl]

OPTIMISATION ITERATION NO. : 6

58

Model calls so far : 28

Starting phi for this iteration: 64.09 -

Contribution to phi from observation group “group_l1l”: 6.740
Contribution to phi from observation group “group_2“: 18.98
Contribution to phi from observation group “group_3“: 10.53
Contribution to phi from prior information : 27.84

All frozen parameters freed

Lambda = 1.9531E-02 ----- >
parameter "ro2" frozen: gradient and update vectors out of bounds
phi = 63.61 (0.99 of starting phi)

Lambda = 9.7656E-03 -~--- >
phi = 63.61 { 0.99 of starting phi)

No more lambdas: relative phi reduction between lambdas less than 0.0300°

Lowest phi this iteration: 63.61
Relative phi reduction between optimization iterations less than 0.1000
Switch to central derivatives calculation

Current parameter values Previous parameter values
rol . 0.500000 rol 0.500000
ro2 10.0000 ro2 10.0000
ro3 1.00000 ro3 1.00000

&

hl 0.265320 hl 0.238277
h2 42.2249 . h2 42.4176
Maximum factor parameter change: 1.113 [hl]

Maximum relative parameter change: 0.1135

OPTIMISATION ITERATION NO. : 7
: Model calls so far : 33
Starting phi for this iteration: 63.61
Contribution to phi from observation group
Contribution to phi from observation group
Contribution to phi from observation group
Contribution to phi from prior information

All frozen parameters freed

Lambda = 4.8828E-03 ----- >

1hl]

“group_l”: 3.679
“group_2“: 32.58
“group_37: 0.111

0 27.24

parameter "ro2" frozen: gradient and update vectors out of bounds

phi = 63.59

(1.00 of starting phi)

Lambda = 2.4414E-03 ----- >

phi = 63.59 { 1.00 of starting phi)
Lambda = 9.7656E-03 ----- >

phi = 63.59 (1.00 of starting phi)

No more lambdas: relative phi reduction between lambdas less than 0.0300

Lowest phi this iteration:

Current parameter values

63.59

Previous parameter values

rol 0.500000 rol 0.500000

ro2 10.0000 ro2 10.0000

ro3 1.00000 ro3 1.00000

hl 0.261177 ’ " hl 0.265320

. . h2 42.2006 . h2 . 42.2249
Maximum factor parameter change: 1.016 [hl]

Maximum relative parameter change: 1.5615E-02 [hl]
Optimization complete: the 3 lowest phi's are within a relative distance

) of eachother of 1.000E-02
Total model calls: 42 ! :

OPTIMISATION RESULTS

Adjustable parameters ----- >

Parameter Estimated 95% percent confidence limits
value lower limit upper limit

ro2 10.0000 0.665815 150.192

hl 0.261177 -1.00256 1.52491

h2 3806.02

42.2006 - 0.467914

Note: confidence limits provide only an indication of parameter uncertainty.
They rely on a linearity assumption which may not extend as far in
parameter space as the confidence limits themselves - see PEST manual.

Tied parameters ----- >

Parameter Estimated value

ro3 1.00000

Fixed parameters ----- >

Parameter Fixed value

rol 0.500000
Observations ----- >
Observation Measured Calculated Residual Weight Group

value value

arl 1.21038 1.64016 -0.429780 1.000 group_1
ar2 1.51208 2.25542 -0.743340 1.000 group_1
ar3 2.07204 3.03643 -0.964390 1.000 group_1l
59

b2

ard 2.94056 3.97943 -1.03887 1.000 group_1
ar5 4.15787 5.04850 -0.890630 1.000 group_1
aré6 5.77620 6.16891 -0.392710 1.000 group_1
ar7 7.78940 7.23394 0.555460 *1.000 group_2
ar8 9.99743 8.12489 1.87254 1.000 group_2
ar9 11.8307 8.72551 3.10519 1.000 group_2
arl0 12.3194 8.89590 3.42350 1.000 group_2
arll 10.6003 8.40251 2.19779 1.000 group_2
arl2 7.00419 6.96319 4.100000E-02 1.000 group_2
arl3 3.44391 4.70412 -1.26021 1.000 group_2
arl4 1.58279 2.56707 -0.984280 1.000 group_2
arls 1.10380 1.42910 -0.325300 1.000 group_3
arlé 1.03086 1.10197 -7.111000E-02 1.000 group_3
arl7 1.01318 1.03488 -2.170000E-02 1.000 group_3
arls 1.00593 1.01498 -9.050000E-03 1.000 group_3
arl9 1.00272 1.00674 ~4.020000E-03 1.000 group_3
Prior information ----- >

Prior Provided Calculated Residual Weight
information value value

pil 2.00000 0.261177 1.73882 3.000

pi2 2.60260 2.62532 -2.271874E-02 2.000

See file TEMP3.RES for more details of residuals in graph-ready format.
See file TEMP3.SEO for composite observation sensitivities.

Objective Function ----- >
Sum of squared weighted residuals (ie phi) = 63.59
Contribution to phi from observation group "group_1l* E 3.686
Contribution to phi from observation group "group_2" = 32.58
Contribution to phi from observation group "group_3" = 0.1115
Contribution to phi from prior information £ 27.21
Correlation Coefficient ----->
Correlation coefficient = 0.9086
Analysis of residuals ----- >
All residuals:-
Number of residuals with non-zero weight e 21
Mean value of non-zero weighted residuals = -0.4399
Maximum weighted residual [observation "arl3"]) = 1.260
Minimum weighted residual [observation "pil"] = -5.216
Standard variance of weighted residuals = 3.533
Standard error of weighted residuals = 1.880

Note: the above variance was obtained by dividing the objective

function by the number of system degrees of freedom (ie. number of
observations with non-zero weight plus number of prior information
articles with non-zero weight minus the number of adjustable parameters.)
If the degrees of freedom is negative the divisor becomes

the number of observations with non-zero weight plus the number of

prior information items with non-zero weight.

Residuals for observation group "group_l1":-

Number of residuals with non-zero weight = 6

Mean value of non-zero weighted residuals = 0.7424
Maximum weighted residual [observation "ard"] = 1.038
Minimum weighted residual (observation "aré"] = 0.3916
"Variance" of weighted residuals = 0.6144
"Standard error" of weighted residuals = 0.7838

Note: the above "variance" was obtained by dividing the sum of squared
residuals by the number of items with non-zero weight.

Residuals for observation group "group_2":-

Number of residuals with nion-zero weight = 8

Mean value of non-zero weighted residuals = -1.119
Maximum weighted residual [observation "arl3"] = 1.260
Minimum weighted residual [observation "arl0"] = -3.424
"Variance" of weighted residuals = 4.072
"Standard error" of weighted residuals = 2.018

60

63

Note: the above "variance" was obtained by dividing the sum of squared
residuals by the number of items with non-zero weight.

Residuals for observation group "group_3":-

Number of residuals with non-zero weight = 5

Mean value of non-zero weighted residuals = 8.6256E-02
Maximum weighted residual [observation "arl5"] = 0.3254
Minimum weighted residual [observation "arl9"] = 4.0200E-03
"Variance" of weighted residuals = 2.2300E-02
"Standard error" of weighted residuals = 0.1493

Note: the above "variance" was obtained by dividing the sum of squared
residuals by the number of items with non-zero weight.

Prior information residuals:-

Number of residuals with non-zero weight = 2

Mean value of non-zero weighted residuals = -2.585
Maximum weighted residual [observation "pi2"} = 4.5451E-02
Minimum weighted residual [observation "pil"] = -5.216
"Variance" of weighted residuals = 13.61
"Standard error" of weighted residuals = 3.689

Note: the above "variance" was obtained by dividing the sum of squared
residuals by the number of items with non-zero weight.

Covariance Matrix ----- >
0.3136 4.8700E-03 -0.4563
4.8700E-03 0.3618 1.3340E-02

-0.4563 1.3340E-02 . 0.8660

Correlation Coefficient Matrix ----- >

1.000 1.4457E-02 -0.8756
1.4457E-02 1.000 2.3832E-02

-0.8756 2.3832E-02 1.000

Normalized eigenvectors of covariance matrix ----- > N

-0.8704 -3.6691E-02 -0.4909
3.5287E-02 -0.9993 1.2121E-02

-0.4910 -6.7718E-03 0.8711

Eigenvalues ----- >
5.6045E-02 0.3621 1.123

Figure 15. Example of a PEST run record file.

4.2.3 Parameter Value File

At the end of every optimization iteration PEST will record the best parameter values that it has
calculated so far to a “parameter value file”. The definition of “best” will depend on its current
mode of operation. The format of the parameter value file will be such that it can be used by the
PEST utility program, TEMPCHEK for the writing of model input files. Hence, through the use
of TEMPCHEK as a postprocessor for PEST, model input files can be written using optimized
parameter values after the optimization process is complete. The parameter value file will also be
useable by the utility program PESTGEN in building a new PEST control file, and by the utility
program PARREP in modifying an existing PEST control file to contain optimized parameter
values calculated by PEST.

An example of a parameter value file is provided in Figure 16. The first line of this file will
contain values of the PEST control variables PRECIS and DPOINT which determine the

61

. s

precision and decimal point protocol with which numbers are to be written to model input files.
Then follows a line for each parameter. Each line contains a parameter name, followed by the
value of the parameter, then the SCALE and OFFSET pertaining to the parameter. Numbers are
written in free field format on each line, and should be space or comma-delimited.

single point
rol 1.000000 1.000000 0.0000000
ro2 40.00090 1.000000 0.0000000
ro3 1.000000 1.000000 0.0000000
hl 1.000003 1.000000 0.0000000
h2 9.999799 '1.000000 0.0000000

Figure 16. A parameter value file.

4.2.4 Parameter Sensitivity File

During each optimization iteration, just after it has calculated the Jacobian matrix, PEST will

calculate the “composite parameter sensitivity” of all parameters and record these to a special
“parameter sensitivity file”. Composite sensitivity is defined by the equation:-

Si= (JtQJ)iillz /m 4)
Wwhere:-

S is the composite sensitivity of the i parameter,

J istheJ acobivan matrix,

Q s the cofactor matrix (see section 3.4), and

m is the number of observations and prior information equations involved in the
parameter estimation process.

The composite sensitivity of a parameter is one measure of the extent to which its value can be
inferred on the basis of the observation data set available for use in the calibration process.

The parameter sensitivity file will be updated from iteration to iteration. Thus at the end of the
optimization process it will record the “sensitivity history” of all parameters.

Part of a parameter sensitivity file is illustrated in Figure 17. During each optimization iteration
PEST will list all parameters sequentially, with one line devoted to each parameter. Each such
line will contain the name of the parameter, the group to which the parameter belongs, the
current value of the parameter, the composite sensitivity of that parameter calculated according to
equation (4), and the relative composite sensitivity of the parameter. The relative composite
sensitivity of a parameter will be obtained by multiplying its composite sensitivity by the
magnitude of the value of the parameter. It is thus a measure of the composite changes in model
outputs that are incurred by a fractional change in the value of the parameter. Composite
sensitivities recorded in the parameter sensitivity file will be sensitivities “as PEST sees them”.
Thus if a parameter is log-transformed, sensitivity will be expressed with respect to the log of
that parameter. See the PEST User’s manual for further details.

62

65

PARAMETER SENSITIVITIES: CASE VESRA
OPTIMISATION ITERATION NO. 1 ----- >
Parameter name Group Current value Sensitivity Rel. Sensitivity
rol xo 1.00000 2.831977E-02 0.00000
ro2 ro 1.00000 7.000557E-02 0.00000
ro3 xo 1.00000 6.521583E-02 0.00000
ro4d ro 1.00000 5.928780E-02 0.00000
ro5 ro 1.00000 5.668304E-02 0.00000
roé ro 1.00000 5.544761E~-02 0.00000
ro7 xo 1.00000 5.489995E-02 0.00000
ro8 ro 1.00000 5.459381E-02 0.00000
ro9) ro 1.00000 5.436991E-02 0.00000
rol0 . ro 1.00000 0.119913 0.00000
OPTIMISATION ITERATION NO. 2 ----- >
Parameter name Group Current value Sensitivity Rel. Sensitivity
rol ro 0.999500 5.323333E-02 1.157362E-05
ro2 ro 1.03878 9.246515E-02 1.527886E-03
ro3 ro 1.24743 9.865513E-02 9.472454E-03
rod ro 1.75286 0.101822 2.481886E-02
ro5 ro 2.59093 0.107088 4.427621E-02
roé ro 3.00000 0.117925 5.626457E-02
ro7 ro 2.16466 0.109469 3.671474E-02
ro8 ro 1.28441 8.904916E-02 9.679949E-03
ro9 ro . 0.982469 7.757826E-02 5.958761E-04
rol0 ro 0.965695 0.133894 2.029866E-03

Figure 17. Part of a parameter sensitivity file.

At the end of the parameter estimation process PEST will provide a complete listing of
composite parameter sensitivities based on the best sensitivity matrix (i.e. Jacobian matrix)
computed during the optimization process. “Best” will be defined in terms of the aim of the
optimization process; this may be to minimize the objective function (parameter estimation
mode), to maximize/minimize a prediction subject to objective function constraints (predictive
analysis mode), or to minimize the regularization component of the objective function subject to
constraints imposed on the measurement component of the objective function (regularization
mode). ‘

When writing these “completion parameter sensitivities” to the end of the parameter sensitivity
file, PEST will list the composite sensitivity and relative composite sensitivity of each parameter
with respect to all observation groups, as well as with respect to each individual observation
group. The composite parameter sensitivity of each observation group will be evaluated using
equation 4 with the summation implied by the matrix equation confined to members of that
particular observation group only. The magnitude will then be divided by the number of
members of that observation group which have non-zero weights. Figure 18 shows an example of
“completion parameter sensitivities” to be recorded at the end of a parameter sensitivity file.

63

llo

COMPLETION OF OPTIMISATION PROCESS
Composite sensitivities for observation group "obsgpl® ----- >
Number of observations with non-zero weight = 8
Parameter name Group Current value Sensitivity Rel. Sensitivity
rol ro 0.889162 1.02061 5.207045E-02
ro2 ro 1.39300 1.34820 0.194075
ro3 ro 4.47273 0.845800 0.550255
ro4 ro 16.1338 0.518719 0.626477
ro5 ro 35.0896 0.522264 0.806991
rob6 ro 19.6885 0.279802 0.362123
ro7 ro 4.60888 4.894390E-02 3.247893E-02
ro8 ro 1.44009 6.702711E-03 1.061632E-03
ro9 ro 0.923289 9.130165E-04 3.164747E-05
rol0 ro 0.939085 1.608980E-04 4.391740E-06
Composite sensitivities for observation group "obsgp2" ----- >
Number of observations with non-zero weight = 11
Parameter name Group Current value Sensitivity Rel. Sensitivity
rol ro 0.889162 0.485804 2.478527E-02
ro2 ro 1.39300 0.637778 9.180881E-02
ro3 ro 4.47273 0.420981 0.273879
ro4 ro 16.1338 0.416505 0.503029
ro5 ro 35.0896 1.20482 1.86166
roé ro 19.6885 1.28907 1.66833
ro7 ro 4.60888 0.549215 0.364456
ro8 ro . 1.44009 0.274187 4.342806E-02
ro9 ro 0.923289 0.196916 6.825610E-03
rol0 ro 0.939085 0.343047 9.363542E-03
Composite sensitivities for all observations/prior info ----- >
Number of observations with non-zero weight = 29
Parameter name Group Current value Sensitivity Rel. Sensitivity
rol ro 0.889162 0.348292 1.776955E-02
ro2 ro 1.39300 0.452692 6.516547E-02
ro3 ro 4.47273 0.296685 0.193015
ro4 ro 16.1338 0.231341 0.279399
ro5 ro 35.0896 0.487534 0.753326
ro6 ro 19.6885 0.503110 0.651131
ro7 ro : 4.60888 0.227297 0.150833
ro8 ro 1.44009 0.137489 2.177661E-02
ro9 ro 0.923289 0.116886 4.051560E-03
rol0 ro 0.939085 0.158161 4.317032E-03

Figure 18. An example of parameter sensitivity information recorded at the end of the
parameter sensitivity file upon completion of PEST execution.

-

4.2.5 Observation Sensitivity File
At the end of the optimization process PEST will record the “composite observation sensitivity”

of every observation involved in this process to a special “observation sensitivity file”. The

composite sensitivity of the j™ observation is defined by the equation:-

5 ={QUIH};, In ©)

64

67

where symbols are the same as for equation (4) and #n is the number of adjustable parameters. The
composite sensitivity of an observation is a measure of the “strength” of that observation in
allowing parameters to be estimated through the optimization process; however its use is limited
because it does not take into account the effect of other observations of similar type. Hence a
high value for the composite sensitivity of a particular observation does not guarantee that the
observation is not redundant.

An example of an observation sensitivity file is provided in Figure 19. One line of data is written
for each observation used in the parameter estimation process. Each such line lists, in order, the
observation name, the group to which the observation belongs, the measured observation value,
the corresponding model-generated value and the composite sensitivity of the observation
calculated according to equation (5).

Observation Group Measured Modelled Sensitivity
arl group_1 1.210380 1.639640 0.5221959
ar2 . group_1 1.512080 2.254750 0.6824375
ar3 group_1 2.072040 3.035590 0.8591846
ard group_1 2.940560 3.978450 1.0338167
ar5S group_1 4.157870 5.047430 1.1915223
aré group_1 5.776200 6.167830 1.3226952

- ar? group_2 7.789400 7.232960 1.4450249
ar8 group_2 9.997430 8.124100 1.5881968
ar9 : group_2 11.83070 8.724950 1.7506757
arl0 group_2 12.31940 8.895600 1.8875951

Figure 19. Part of an observation sensitivity file.

4.2.6 Residuals File

At the end of the optimization process, PEST will record the following information to a
-“residuals file”. :

» field or laboratory measurements used in the calibration process,

¢ model-generated equivalents to these,

e residuals, '

* weighted measurements,

* weighted model-generated counterparts to measurements,

e weighted residuals, 4

¢ measurement standard deviations, and

* natural weights.
The “measurement standard deviation” of each observation will be calculated as the inverse of its
weight multiplied by the square root of the “reference variance”; the reference variance is equal

to the variance of the weighted residuals. “Natural weights”, as represented in the residuals file,
are the inverse of measurement standard deviations.

Data stored within the residuals file will adhere to a format whereby it is easily imported into a
spreadsheet for further post-processing and analysis.

The character width of the residuals file is too great to provide an example in this document to
illustrate its formatting; so its formatting will be described. One record will be written for each

65

g

observation comprising the calibration data set. Each number written to this file (see the above
list for what these numbers represént) will be recorded with a field width of 14 characters,
separated from its neighbor by two blank characters. The field width of the observation name
(which will lead each line) will be 12 characters.

4.2.7 Matrix File

If any of the ICOV, ICOR or IEIG variables in the “control data” section of the PEST control file
are set to 1, PEST will compute the parameter covariance matrix during each optimization
iteration on the basis of current parameter values. It will then write to a “matrix file” one or all
(depending on the settings of the above variables) of the following data:

e parameter standard deviations,

e the parameter covariance matﬁx,

e the parameter correlation coefficient matrix, and

e the eigenvalues and eigenvectors of the parameter covariance matrix.

Figure 20 showS an example of a matrix file written by PEST.

PARAMETER STATISTICAL MATRICES: CASE VES7

OPTIMISATION ITERATION NUMBER 12

Parameter standard deviations ----- >

Adjustable Group Current Standard
parameter value deviation
rol ro 0.999991 6.950057E-06
ro2 ro 40.0038 3.427096E-05
hl hhh 1.00001 9.515758E-06
h2 hhh 9.99902 3.501148E-05

Note that if a parameter is log-transformed, the standard deviation in the
above table refers to the log of the parameter. Note also that the objective
function used in the calculation of the covariance matrix (and eigenvalues

of the covariance matrix) was calculated at the end of the previous iteration.

Parameter covariance matrix ----- >
rol ro2 hl h2
rol 4.8303E-11 6.0912E-11 5.5980E-11 -6.7643E-11
ro2 6.0912E-11 1.1745E-09 2.3340E-10 -1.1988E-09
hl 5.5980E-11 2.3340E-10 9.0550E-11 -2.4321E-10
h2 -6.7643E-11 -1.1988E-09 -2.4321E-10 1.2258E-09
Parameter correlation coefficient matrix ----- >
] rol ro2 hil h2
rol 1.000 0.2557 0.8464 ~0.2780
ro2 0.2557 1.000 0.7157 -0.9991
hl : 0.8464 0.7157 1.000 -0.7300
h2 -0.2780 -0.9991 -0.7300 1.000
Normalized eigenvectors of covariance matrix ----- >
vVector_l Vector_2 Vector_3 . Vector_4
rol 0.5124 0.4761 -0.7135 -4 .0742E-02
ro2 0.5479 -0.4518 0.1315 -0.6916
66

69

hil -0.4625 -~0.5430 -0.6863 -0.1422
h2 0.4726 -0.5238 -5.0493E-02 0.7070
Eigenvalues ----- >

5.2599E-04 1.0707E-02 8.6137E-02 2.4514E-01

Figure 20. Contents of a matrix file written by PEST.

The matrix file will be re-written during every optimization iteration as parameters are upgraded
through the parameter estimation process.

4.2.8 Run Management Record File

Parallel PEST will write a “run management record file” recording the names and details of all
slaves used in the parameter estimation process, and the history of communications between
PEST and each of its slaves. Each communication will be annotated with the time at which the
communication took place. An example of such a file, illustrating its formattmg, is provided in
Fi gure 21.

PEST RUN MANAGEMENT RECORD FILE: CASE VES2
SLAVE DETAILS:-

Slave Name ' PSLAVE Working Directory N

‘"slave 1" . /modell/ -
"slave 2" . /model2/

"slave 3" . /model3/

Attempting to communicate with slaves

- slave "slave 2" has been detected.
- slave "slave 3" hds been detected.
- slave "slave 1" has been detected.

SLAVE MODEL INPUT AND OUTPUT FILES:-
Slave "slave 1" ----- >

Model input files on slave "slave 1":-
./modell/ves.inl
./modell/ves.in2

Model output files on slave "slave 1":-
./modell/ves.otl
./modell/ves.ot2
./modell/ves.ot3

Model command line for slave "slave 1":-
ves

Slave "slave 2" --—-—-— >

Model'inpﬁt files on slave "slave 2":-
./model2/ves.inl
./model2/ves.in2

Model output files on slave "slave 2":-
./model/ves.otl
./model/ves.ot2
./model/ves.ot3

67

Model command line for slave "slave 2":- -
ves
Slave "slave 3" ----- >

Model input files on slave "slave 3":-
./model3/ves.inl
./model3/ves.in2

Model output files on slave "slave 3":-
./model3/ves.otl
./model3/ves.ot2
./model3/ves.ot3

Model command line for slave "slave 3":-
ves

AVERAGE WAIT INTERVAL: 50 hundredths of a second.

RUN MANAGEMENT RECORD

RUNNING MODEL FOR FIRST TIME -~---- >
21:50:00.19:- slave "slave 1" commencing model run.

21:55:05.00:- slave "slave 1" finished execution; reading results.

OPTIMISATION ITERATION NO. 1 ----- >

Calculating Jacobian matrix: running model 5 times
21:55:23.65:- slave "slave 1" commencing model run.
21:55:33.92:- slave "slave 3" commencing model run.
21:55:44.20:- slave "slave 2" commencing model run.

22:00:05.79:- slave "slave 2" finished execution; reading results.
22:00:17.77:- slave "slave 3" finished execution; reading results.

22:00:29.47:- slave "slave 2" commencing model run.
22:00:39.58:- slave "slave 3" commencing model run.

22:00:50.07:- slave "slave 1" finished execution; reading results.
22:05:11.83:- slave "slave 2" finished execution; reading results.
22:05:43.70:- slave "slave 3" finished execution; reading results.

Testing parametef upgrades
22:06:01.69:~ slave "slave 2" commencing model run.

22:11:16.45:- slave "slave 2" finished execution; reading results.

22:11:27.49:- slave "slave 2" commencing model run.

22:16:19.63:- slave "slave 2" finished execution; reading results.

22:16:35.95:- slave "slave 2" commencing model run.

22:21:23.48:- slave "slave 2" finished execution; reading results.

OPTIMISATION ITERATION NO. 2 ----->

Calculating Jacobian matrix: running model 5 times
22:21:45.07:- slave "slave 2" commencing model run.
22:21:55.40:- slave "slave 3" commencing model run.
22:22:25.05:- slave "slave 1" commencing model run.

22:27:05.83:- slave "slave 2" finished execution; reading results.
22:27:28.20:- slave ‘"slave 3" finished execution; reading results.

22:27:39.52:- slave "slave 2" commencing model run.
22:27:52.63:- slave "slave 3" commencing model run.

22:28:05.18:~ slave "slave 1" finished execution; reading results.
22:33:06.55:- slave "slave 2" finished execution; reading results.
22:33:33.03:- slave "slave 3" finished execution; reading results.

Testing parameter upgrades
22:34:11.46:- slave "slave 2" commencing model run.

22:39:36.82:~ slave "slave 2" finished execution; reading results.

22:39:48.09:- slave "slave 2" commencing model run.

22:45:40.28:- slave "slave 2" finished execution; reading results.

22:45:51.38:~ slave "slave 2" commencing model run.)

22:50:43.30:- slave "slave 2" finished execution; reading results.

OPTIMISATION ITERATION NO. 3 ----->

Calculating Jacobian matrix: running model 10 times

68

7/

22:50:54.46:- slave "slave 2" commencing model run.
22:51:14.68:- slave "slave 3" commencing model run.

Figure 21. Part of a Parallel PEST run management record file.

69

T

5. User Interfaces

5.1 Input Data

All input data will be supplied to PEST through its template, instruction and control files (and
perhaps one or more observation covariance files) in the manner already discussed. The names of ’
the template and instruction files pertaining to a particular optimization run (and the model input
and output files to which they correspond) will be cited in the PEST control file. So, too, will the
names of any observation covariance matrix files required for the parameter estimation process
carried out by PEST.

5.2 Command Line

PEST will be directed to its input control file through its command line. PEST will be run using
the command:- : -

pest casefile [/r] [/]]
where

casefile is the name of the PEST control file pertinent to the current optimization

problem,

Ir informs PEST that it must re-commence a previous, prematurely-terminated
run at the beginning of the optimization iteration during which termination took
place, and

/j informs PEST that it must re-commence a previous, prematurely-terminated

run at that location within the previous optimization process at which
calculation of the Jacobian matrix had just taken place.

Paralle] PEST will be run in identical fashion, except that the “ppest” command will be used
instead of the “pest” command. Each of its slaves will be run by typing “pslave” at the screen
prompt. :

5.3 User Intervention

As was discussed in Section 3.11, if he/she deems it necessary, the user will be able to intervene
in the optimization process in order to hold troublesome parameters fixed and/or to alter the
values of a number of key input control variables. Such intervention will take place by
terminating PEST execution, writing or editing a “parameter hold file”, and then re-starting
PEST using the “/j” switch.

70

73

- 5.4 Terminal Display

Throughout the course of its execution PEST will display an abbreviated form of the run record
to the terminal screen so that the user can easily monitor the progress of the optimization process.
Information displayed on the screen will include the following:-

e optimization iteration number,

e current value of the Marquardt lambda,

e current value of the objective function,

e contribution made to the objective function by different observation groups
e maximum factor or relative change undergone by any parameter,

e current value of a key model prediction (predictive analysis mode only),

e current value of measurement and regularization objective functions (regularization mode
only), and
e current value of the regularization weight factor (regularization mode only).

5.5 Error Messages

If it encounters an error in its input data set, PEST will report the error to the screen and to its run
record file; it will then terminate executlon

Tables 19 to 23 present a list of PEST error messages. The error messages-are grouped according
to the categories comprising the table captions. An appropriate user response to each message is

also provided.

Error message

Reason for error

User’s response

All slaves are not alive. Start

missing slaves and re-start PEST. .

{ Parallel PEST has not detected the

presence of an expected slave.

Check that the slave working -
directories supplied in the run
management file are correct.

Cannot close file filename.

Parallel PEST is unable to close a
model input or output file resident
on another machine.

Check that the local area network is
operating correctly and that it is not
burdened with excessive traffic.

Cannot communicate with file
filename.

Parallel PEST is unable to write or
read a message file on another
machine. -

Check that the slave working
directories supplied in the run
management file are correct.

Cannot delete file filename.

Parallel PEST is unable to delete a
model output file on another
machine.

Check that the local area network is
operating correctly and that it is not
burdened with excessive traffic.

Cannot open file filename.

File not present or is erroneously
named.

Create file expected by PEST under
the name expected by PEST.

Cannot open file filename for
output.

The file is currently in use by
another application.

Close the file in the other
application.

71

Cannot open file filename to read
Jacobian matrix.

The Jacobian matrix file from the
previous PEST run has been deleted
or is in use by another application.

Close the file in the other
application or re-start the current
PEST run with “/r”” switch.

Cannot open file filename to read
restart data.

One of the binary files that stores
the data that PEST needs to re-
commence execution after a
previous interruption has been
deleted.

Recommence the PEST run from
the beginning of the optimization
process.

Cannot open file filename to
recommence run record.

The run record file is currently in
use by another application.

Close the file in the other

application.

Cannot open model input file
filename to update parameter
values.

The model input file is currently in
use by another application.

Close the file in the other
application.

Cannot open model input template
file filename. '

File is not present or is erroneously
named.

Create template file expected by
PEST under the name expected by
PEST.

Cannot open model output file
filename.

The model output file has not been
written by the model, probably
because the model did not run
correctly.

Attempt tp run the model from the
command line in order to ascertain
the reason for its failure to run.

Cannot open instruction file
filename.

Either the instruction file is

| incorrectly named in the PEST

control file, or it is currently opened
by another application.

Alter the name of the instruction file

| in the PEST control file, or close

the file in the other application.

Cannot open run management file
filename. :

File is not present or is erroneously
named.

Create run management file, or
copy existing file to that expected
by PEST.

Cannot re-open file filename to
continue PEST run record.

When PEST execution was re-
commenced using the “/r’”’ or */j”
switch, it could not re-open the run
record file.

Check that the run record file has
not.been deleted, or is currently

‘held open by another application.

Cannot write data to observation
sensitivity file.

Observation sensitivity file is
currently in use by another
application.

Close the file in the other
application.

Cannot write data to run record file.

The run record file is currently in

| use by another application.

Close the file in the other
application.

Cannot write data to parameter
sensitivity file.

The parameter sensitivity file is
currently in use by another
application.

Close the file in the other
application.

Cannot write data to residuals file.

The residuals file is currently in use
by another application.

Close the file in the other
application.

72

75

Cannot write file filename to record
restart data. -

The binary restart data file is being
used by another application (maybe
another PEST run).

Close the other application.

Cannot write to PEST message file
pest.mmf.

The operating system will not allow
PEST to write to the PEST message
file — probably because another
application has opened this file.

Close the other application.

Cannot write to run management
record file.

The run management record file is
being used by another application.

Close the file in the other
application.

Error reading file filename to
obtain restart data.

The file has been corrupted or the
user has altered the PEST control
file since the previous run.

Alter the PEST control file to its
status before the previous run, or re-
commence a new PEST run from
the beginning.

Error reading line n-of file
filename; incorrect data type or
data missing.

PEST encountered a character string
or blank space where it expected to
find a number.

Edit the file and place the correct
data item where PEST expects to
find it.

Error writing to file ﬁleﬁame.

The file is currently in use by
another application.

Close the file in the other
application.

Unable to write model input file.

-

The model input file is currently in

*| use by another application.

Close the file in the other
application.

Unexpected end to file filename,
data missing.

When reading file filename, PEST
unexpectedly encountered the end to
the file.

Edit the file, adding the data
expected by PEST to the end of the
file.

Unexpected end to file holding
restart data.

Either the file is corrupted or the
PEST control file has been altered
since the previously interrupted run.

Change the PEST control file to its.
status before the previous run, or re-
commence the new PEST run from
the beginning.

Table 19. File-handling errors.

73

1)

Error message

Reason for error

User’s response

All observations belonging to
observation group “regul” have a
weight of zero.

When PEST is run in regularization
mode, weights assigned to
observation group “regul” cannot be
altered by a weight factor if they are
Zero.

Edit the PEST control file, altering
the weight assigned to at least one -
member of observation group
“regul” to a non-zero value.

Attempt to log transform zero or
negative parameter value.

The initial value for a log-
transformed parameter supplied in
the PEST control is zero or
negative.

Untransform the parameter, or keep
it positive using appropriate
SCALE and OFFSET values.

Both PHIMLIM and
PHIMACCEPT must be positive in
regularization section of PEST

| control file.

One of PHIMLIM or
PHIMACCEPT has been supplied
with a zero or negative value.

Edit the PEST control file,
supplying positive values for both

of these variables.

Error in predictive analyzer data
set. :

An error has been encountered in
reading one of the variables from
the “predictive analysis” section of
the PEST control file.

Edit the PEST control file,
rectifying the error.

Error reading prior information:
line n of file filename.

Incorrect syntax used in prior
information equation.

Edit the PEST control file and
rectify the prior information syntax
error.

FRACPHIM must be less than 1.0
in regularization section of PEST
control file.

The value supplied for the
FRACPHIM variable in the PEST
control file is out of bounds.

Edit the PEST control file,
supplying an appropriate value for
this variable.

Incorrect parameter name or
improper syntax in prior

information: line n of file filename. |

Incorrect syntax has been used in
one of the lines which is used to
provide prior information to PEST.

Edit the PEST control file and
rectify the prior information syntax
error.)

Log-transformed parameter
referenced as untransformed in
prior information. Parameter
parname on line n of file filename.

A log-transformed parameter must
be referenced as such in each item
of prior information which cites that
parameter.

Either alter the parameter’s
PARTRANS value to “none” or
reference that parameter as log-
transformed in the prior information
equation.

No members of observation group
“regul” in “observation data”
section of PEST control file.

If PEST is run in regularization
mode, one or more observations
must belong to the observation
group “regul”.

Edit the PEST control file, adding
observations to the observation
group “regul” as appropriate.

No observation in the “observation
data” section of the PEST control
file belongs to the observation
group “predict”.

If PEST is run in predictive analysis
mode, then one observation must be
assigned to the observation group
“predict”.

Edit the PEST control file,
assigning the name of the
observation that is serving as a
prediction to the observation group
“predict”.

Observation name obsname from
instruction file not cited in PEST
control file. Instruction line
follows:-

An instruction has used an
observation name which is not cited
in the PEST control file.

Add the instruction name, together
with its measured value and weight,
to the PEST control file.

Observation group “predict” not
found in “observation groups”
section of PEST control file
filename.

If PEST is run in predictive analysis
mode, an observation group named
“predict” must be employed.

Add the name of this observation
group to the “observation groups”
section of the PEST control file.

Observation group “regul” not
found in “observation groups”
section of PEST control file.

If PEST is run in regularization
mode, an observation group named
“regul” must be employed.

Add the name of this observation
group to the “observation groups”
section of the PEST control file.

"| Observation obsname not
referenced in any instruction file.

An observation was encountered in
the “observation data” section of the
PEST control file which was not
cited in any instruction files.

Provide an instruction to read the
observation in an instruction file
cited in the PEST control file, or
remove the instruction from the
PEST control file.

Only one observation can belong to
observation group “predict” in
“observation data” section of PEST
control file.

PEST is running in predictive
analysis mode and more than one
observation has been assigned to the
observation group “predict”.

Edit the PEST control file, ensuring |

that only one observation belongs to
the observation group “predict”.

Parameter cited in prior
information is fixed or tied.
Parameter parname on line n of file
filename.

All parameters cited in prior
information must be adjustable; this
rule has been violated.

Edit the PEST control file.and
rectify the error.

Parameter parname assigned a
SCALE value of zero; line n of file
filename. - .

A parameter has been assigned a
SCALE value of zero; this is an
illegal value.

Edit the PEST control file,
assigning the parameter a non-zero
SCALE value.

Parameter parname is not a tied
parameter. Line n of file filename.

A parameter, not declared as “tied”,
has been linked to another
parameter.

Alter the PARTRANS value of the
offending parameter to “tied”.

Parameter cannot be tied to fixed or
tied parameter: line n of file
filename.

A parameter in the PEST control file
is denoted as being tied to a
parameter which is itself fixed or
tied.

If the parameter is tied to another
tied parameter, tie the parameter to
the parent of the tied parameter
instead.

Parameter cannot be tied to itself;
line n of file filename.

A parameter was designated as
being tied to itself in the “parameter
data” section of the PEST control
file.

Either designate the parameter as
adjustable, or tie it to another
parameter.

Parameter group “none” is reserved
for tied and fixed parameters. Line
n of file filename.

A parameter was assigned to a.
parameter group named “none” in
the “parameter data” section of the
PEST control file.

Assign the parameter to another
group.

75

1%

PESTMODE must be “estimation”,
“regularization” or “prediction” in
line n of file filename.

An incorrect specification has been
set for the PESTMODE variable in
the PEST control file.

Edit the PEST control file, altering
the value for the PESTMODE
variable.

Prediction must be final
observation when PEST is run in
predictive analysis mode and
derivatives are supplied externally.

Data pertaining to the prediction in
the “observation data” section of the

| PEST control file must be located at

the end of this section.

Edit the “observation data” section
of the PEST control file, moving
the single line pertaining to the
prediction to the end of this section.

Third line of file filename must be
“restart” or “norestart”.

The value of the PEST RSTFLE
variable was incorrectly supplied.

Edit the PEST control file, altering
the value for the RSTFLE variable.

Unknown barameter group; line n
of file filename.

A parameter in the “parameter data”
section has been assigned to a group
which was not defined in the
“parameter groups” section.

Assign the parameter to a
previously defined parameter group.

Untransformed parameter .
referenced as log-transformed in
prior information. Parameter
parname on line n of file filename.

An untransformed parameter must
be referenced as such in each item
of prior information which cites that
parameter.

Alter the parameter’s PARTRANS
value to “log” or reference that-
parameter as untransformed in the
prior information equation.

Unrecognized decimal point
indicator: line n of file filename.

An invalid charicter string was
supplied for the variable DPOINT in
the PEST control file.

Edit the PEST control file, .

supplying a valid value for the'
variable DPOINT.

Unrecognized derivative
information; line n of file filename.

One of the variables supplied in the
“parameter groups” section of the
PEST control file has an
unrecognizable value.

Edit the “parameter groups” section
of the PEST control file and rectify -
the error.

Unrecognized parameter change
limit. Line n of file filename.

The PARCHGLIM variable
supplied for at least one parameter is
incorrect.

Edit the PEST control file and
rectify the parameter change limit. -

Unrecognized observation group:
line n of file filename.

An observation group has been cited
in the “observation data” section of
a PEST control file that has not been
cited in the “observation groups”
section of this file. ’

Edit the PEST control file, adding
the observation group to the
“observation groups” section of the
PEST control file.

Unrecognized parameter name
“parname’: line n of file filename.

A parent or tied parameter name
listed in the linkages subsection of
the “parameter data” section has not
been previously defined as a
parameter.

Define the parameter or alter the
incorrect name to the name of a
defined parameter.

Unrecognized parameter precision
type: line n of file filename.

An invalid character string was
supplied for the variable PRECIS in
the PEST control file.

Edit the PEST control file,
supplying a valid value for the
variable PRECIS.

76

79

Unrecognized parameter
transformation/tied/fixed
information. Line n of file
filename.

The PARTRANS variable for at
least one parameter supplied in the
PEST control file is incorrect.

Edit the PEST control file and
rectify the transformation status of
the parameter.

v

Table 20. Errors pertaining to the PEST control file.

Error message

Reason for error

User’s response

Backwards move to tab position:
line n of model output file
filename.

Following its previous instruction,
PEST has advanced further along a
line of model output than the
location of the tab position indicated
in the present instruction.

Establish why the model output file
is different from expected, or alter
the instruction file until the model
output file is read correctly.

Blank parameter space: line n of
template file filename.

Only whitespace exists between two
parameter delimiters at one location
in a template file.

Edit the template file, placing the
name of a parameter between the
parameter delimiters.

Cannot find observation obsname:
line n of model output file:
filename.

Either the model output file is
different from expectations or the
instruction set is incorrect.

Ascertain the reason why the model
wrote an unanticipated output file,
or make corrections to the
instruction set.

Cannot interpret instruction for
reading model output file.
Instruction line follows:-

An instruction is incorrectly
provided in an instruction file.

Alter the instruction file to-provide
the correct syntax.

Cannot read line advance item.
Instruction line follows:-

A number signifying the number of
lines that must be jumped when
reading a model output file cannot
be read.

~ Edit the instruction file, rectifying

the error.

Cannot read tab position.
Instruction line follows:-

The number, signifying the character
position to which the instructional
“cursor” should advance cannot be
read. ‘

Edit the instruction file, rectifying
the error.

Continuation charactér must not be
first instruction on line. Instruction
line follows:-

The user has provided an instruction
line with incorrect syntax.

Edit the instruction file, rectifying
the syntax error.

Error reading observation
obsname: line n of model output
file filename.

Either the model output file is
different from expectations or the
instruction set is incorrect.

Ascertain the reason why the model
wrote an unanticipated output file,
or make corrections to the
instruction set.

Error writing parameter parname to
model input file; internal error.

The subroutine which maximizes
parameter significance in a confined
space has encountered an error
condition.

Report the error to the programmer.

77

80

Ty
x i

Error writing parameter parname to
model input file; exponent too large
for single precision protocol.

The magnitude of the current value
of & parameter is greater than abdlit
10,

i

Alter the value of the PRECIS
variable to “double” in the PEST
control file.

Error writing parameter parname to
model input file; exponent too large
for double precision protocol.

The magnitude of the current value
of a parameter is greater than about
1078

Adjust the parameter’s SCALE
value to decrease the parameter’s
size. :

Error writing parameter parname to
model input file. Template field
width too small to represent currént
value; number too large or too
small to be represented with any
precision.

«

The current value of a parameter is
too large to fit into the space
allowed for it in the template file.

Increase the parameter space width
if the model input file protocol
allows it.

File filename does not have the
correct instruction file header.

The pertinent file does not begin
with the string “pif #” where “#” is a
marker delimiter.

Edit the instruction file and add the
string to the top of the file.

File filenaine does not have correct
template file header.

The pertinent file does not begin
with the string “ptf #” where “#” is
a parameter delimiter.

Edit the template file and add the
string to the top of the file.

First instruction in file filename
cannot start with a continuation
character. Instruction line follows:-

The first instruction in the pertinent
instruction file has incorrect syntax.

Edit the instruction file, rectifying
the syntax error.

Missing marker delimiter.
Instruction line follows:-

There is an error in the syntax of an
instruction involving a marker
delimiter cited in an instruction file.

Edit the instruction file, rectifying
the error..

Parameter parname not cited in
PEST control file: line n of
template file filename.

A parameter name is cited in a
template file. However the name of
the same parameter is not cited in
the PEST control file.

Add the name of the parameter, as
well as data pertaining to that
parameter, to the PEST control file.

Parameter parname not referenced
in any template file.

A parameter is cited in the PEST
control file which is not cited in any
template file.

Edit the template file corresponding

| to the model input file to which the

parameter must be written, citing
the name of that parameter.

Parameter space less than three
characters wide; line n of template
file filename.

A parameter space width defined in
the template file is less than three
characters wide.

Increase the parameter space width
if the model input file protocol
allows. it.

Tab moves beyond end of line: line
n of model output file filename.
Instruction line follows:-

Either the model output file is
different from expectations or the
instruction set is incorrect.

Ascertain the reason why the model
wrote an unanticipated output file,
or make corrections to the
instruction set.

Unable to find expected
whitespace, or whitespace precedes
end of line: line n 6f model output
file filename.

Either the model output file is
different from expectations or the
instruction set is incorrect.

Ascertain the reason why the model |

wrote an unanticipated output file,
or make corrections to the
instruction set.

78

g1

Unable to find secondary marker:
line n of model output file
filename.

Either the model output file is
different from expectations or the
instruction set is incorrect.

Either ascertain the reason why the
model wrote an unanticipated
output file, or make corrections to
the instruction set.

Unbalanced parameter delimiter at
line n of template file filename.

A parameter delimiter preceding a
parameter niame is not balanced by a
delimiter after the parameter name.

Edit the template file, adding the
parameter delimiter.

Unexpected end to model output
file: instruction line follows:-

In following a set of instructions,
PEST unexpectedly encountered the
end of a model output file.

Either ascertain the reason why the
model wrote an unanticipated
output file, or make corrections to
the instruction set.

Table 21. Errors in template and instruction files, or in reading/writing model input/output

files.

Error message

Reason for error

"User’s response

A covariance matrix must not be
supplied for observation group
“predict” when PEST is run in
predictive analysis mode.

When PEST is run in predictive
analysis mode the single member of
the observation group “predict” is
maximized or minimized, not
compared with field data.

Edit the PEST control file,
removing the name of the
observation covariance file from
beside the observation group
“predict” in the “observation
groups” section.

Cannot calculate eigenvectors of
covariance matrix supplied for
observation group obsgroup.

The covariance matrix supplied for
observation group obsgroup is not a
legal covariance matrix.

Edit the observation covariance
matrix supplied for observation
group obsgroup.

Error encountered in reading
covariance matrix file filename.

The data provided in the observation
matrix file filename cannot be read
as a sequence of numbers.

Edit the observation covariance
matrix file and rectify the error.

File filename contains an illegal
covariance matrix.

The matrix contained in an
observation covariance matrix file is
illegal.

Edit the observation covariance
matrix file and rectify the error.

If a covariance matrix is supplied
then an observation group can
belong to observations or prior
information but not both.

A covariance matrix cannot be
assigned to an observation group
comprised of both observations and
prior information equations.

Assign either the observation data
or prior information to a different
observation group and provide a
separate covariance file for the new
group.

Unexpected end encountered to
covariance matrix file filename.

There are insufficient entries in the
observation covariance matrix
provided in file filename.

Edit the observation covariance
matrix file and rectify the error.

Table 22 Errors in Observation Covariance Matrix Files.

79

32

-

Error message

Reason for error

R O

User’s response

Cannot allocate sufficient memory
for least squares optimization.

;l‘he number of parameters and/or
observations involved in the
parameter estimation process is too
large.

Reduce the number of parameters or
observations, or run the case on a
computer with more memory.

Cannot calculate derivative for
parameter parname. Increment
calculated as fraction of maximum
parameter in group, which is zero.
No lower increment limit provided.

Increment type for parameter group
to which parameter belongs has
been specified as “rel_to_max”.
However the maximum parameter
value in group is zero.

Provide non-zero parameter
absolute lower bound for pertinent
parameter group (i.e. variable
DERINCLB) in the “parameter
groups” section of the PEST control
file.

Cannot calculate derivative for
parameter parname. Log-
transformed parameter is zero or
negative.

Incorrect initial value has been
supplied for the parameter.

Provide a positive initial value for
the parameter, or change its
PARTRANS value from “log” to
“none”. !

"

Cannot calculate derivative for
parameter parname. Parameter zero
so increment (calculated as fraction
of parameter) also zero. No lower
increment limited provided.

Increment type for parameter group
to which parameter belongs has
been specified as “relative”. This
results in a zero increment when the
parameter is zero.

Provide non-zero parameter .
absolute lower bound for pertinent
parameter group (i.e. variable
DERINCLB) in the “parameter
groups” section of the PEST control
file.

| Cannot calculate derivative for

parameter parname. Parameter
increment zero to precision allowed
by parameter template field width.

The current value of a parameter is
indistinguishable from its
incremented counterpart when
written to a space of limited width
on the model input file.

Increase the parameter space width
in the pertinent template file. If the
model does not allow this, increase

| the parameter derivative increment.

Cannot proceed. All parameters are
either fixed, frozen or held.

There are no adjustable parameters,
or PEST has fixed all adjustable
parameters at their upper/lower
bounds.

Denote certain parameters as
adjustable and/or alter parameter
bounds. -

Cannot restart; a PEST control file
has been altered since saving restart
data.

An attempt was made to re-start a
previously interrupted PEST run.
However the PEST control file has
been altered.

Change the PEST control file back
to the way it was before the.
previous run was commenced.

Cannot restart; PEST was not
instructed to record restart file in
previous run.

The RSTFLE variable in the PEST
control file was set to “norestart”.

Recommence the previous PEST
run from the beginning of the
parameter estimation process.

Cannot restart; previous PEST run
was not halted prematurely.

The previous PEST run was
terminated by PEST due to
objective function or parameter
convergence.

Use the PARRERP utility to build a
new PEST control file using
parameter values optimized from
the previous PEST run. Then start
PEST again based on the new PEST
control file. :

80

83

PEST v5.5 Software Design Document 7?7?77

Cannot restart: previous PEST run
was in predictive analysis mode.

An attempted is being made to
restart a previous predictive analysis
run in parameter estimation or
regularization mode.

Alter the PEST control file, setting
PESTMODE to the correct mode.

Cannot restart: previous PEST run
was not in predictive analysis
mode.

An attempt is being made to restart a
previous parameter estimation or
regularization run in predictive
analysis mode.

Alter the PEST control file, setting
PESTMODE to the correct mode.

Cannot restart: previous PEST run
was in regularization mode.

An attempt is being made to restart a
previous regularization run in
parameter estimation or predictive
analysis mode.

Alter the PEST control file, setting
PESTMODE to the correct mode.

Cannot restart: previous PEST run
was not in regularization mode.

An attempt is being made to restart a
previous parameter estimation or
predictive analysis run in
regularization mode.

Alter the PEST control file, setting
PESTMODE to the correct mode.

Cannot restart with “/j”” option:
unable to read Jacobian matrix
from file filename.

The previously stored Jacobian
matrix file has been deleted.

Re-start the PEST run with the “/r”
switch rather than the “/j”” switch.

Command line argumeént should
provide filename base for current
case.

The command to run PEST has been
provided without a command-line
argument.

Re-run PEST, providing the name
of the PEST input file on the
command line.

Improper command line switch.

An improper command line switch
was entered from the keyboard.

Re-type the command, using the
correct syntax.

Improper command line syntax.

The command used to start a PEST
run was not syntactically correct.

Re-type the command, using the
correct syntax.

Incorrect NPAR or NOBS value on
first line of derivatives file
filename.

The number of parameters and
observations for which derivatives
are supplied by the model does not
accord with those in the current
parameter estimation problem.

The model algorithm for computing
parameter derivatives for the
current parameter estimation case
must corrected.

Internal error in calculating
derivative for parameter parname.

In most cases this is caused by a
parameter initial value which is not
between its upper and lower bounds.

Edit the PEST control file,
adjusting the parameter’s upper
and/or lower bound as appropriate.

Jacobian matrix stored in file
filename is not current.

.

An attempt was made to re-
commence a PEST run using the
“/j”” command-line switch. When
PEST tried to read its previous
Jacobian matrix, a discrepancy was
encountered with the present data
set.

Re-commence PEST execution
without the */j”” command-line
switch.

81

34

Varying one or more parameters Model outputs are completely - ! Change initial parameter values,
has no effect on model output. insénsitive to the value of at least>* | increase parameter derivative
one parameter. increments, or hold offending
P .

parameters fixed.

Table 23. General PEST errors.

5.6 Stopping or Pausing PEST Execution

A number of tiny utility programs named PSTOP, PSTOPST, PPAUSE and PUNPAUSE will be
provided with PEST. These will allow the user to “send a message to PEST”, the nature of the
message being listed in Table 24. These should be run from another terminal window, opened in
the PEST working directory while PEST is running. They will each write a small file containing
a coded instruction to PEST. PEST will look for this file after every model run.

Command Action taken by PEST

pstop Ceases execution immediately without recording optimised parameter values or any
statistics based on these. '

pstopst Ceases execution. However, before doing so, PEST will record optimised parameter
values and all statistics based on these and corresponding residuals to its normal output
files. ' :

ppause Pauses execution.

punpause Re-commences execution after a pause.

Table 24. Commands used to stop and pause PEST execution.

5.7 Dialogs

No dialog boxes occur within the user interface to PEST or any of its utilities.

5.8 Online Help

Because it was designed to perform a discrete numerical task, and to terminate execution when it
finishes that task, no online help is available through the PEST user interface.

82

6. System Interfaces

All interfacing between PEST and the system under which it runs will take place through
software generated by the FORTRAN compiler used to create the PEST executable program.

When PEST needs to run the model, it will do so through invocation of a “system” subroutine or
function call. Though not standard FORTRAN functionality, such a subroutine or function is
available through all FORTRAN compilers.

The volume and frequency of data transfer by functional transactions will depend entirely on the
simulation model with which PEST is being used. However, as the nature of PEST's interface
with that model is simply to write its input files and read its output files, data volumes involved
in this process will be no more than those required by the model itself. Hence the use of PEST
will not place any requirements on the system beyond those already placed by the simulation
model with which it is working (i.e. its “loading factor” with respect to the model will be unity).

Correct data transfer between PEST and the model will be verified if the model runs correctly. If
the model fails to run after its input files were written by PEST, an error message will be written
to the screen and run record file by PEST, stating that the model’s output file cannot be found.
The user will then be able to ascertain any breeches in data transfer protocol that have arisen
through inspecting the model input file generated by PEST. Similarly, if PEST is unable to read a
model output file, the nature of the failure will be apparent from the PEST error message that is
displayed as a result of this occurrence. The user will then be able to rectify the problem through
making an appropriate change to the pertinent PEST instruction file. (Note that all data transfer
formats have been specified in detail in Section 4 of this document.) -

Data validation will take place using the utility programs described in Section 3.18 of ‘this
document. ’

As is explained in Section 3.17, parallelization of model runs will be achieved through “message
files” in a system-independent manner. The model will actually be run by a (FORTR AN-coded)
“slave program” through a system call at the receipt of a signal conveyed to it by PEST through a
message file. Hence there is no requirement for the use of any network communication protocols
such as TCP/IP, modem connection, ppp, etc.

83

3l

7. Security

PEST will be used in the calibration of existing models against existing data sets, or those to be
gathered in the normal course of their work by personnel of the Geoanalysis Group. Hence use of
PEST will introduce no new security and access issues beyond those already in place. In short,
security issues are only pertinent to the existing simulation models and the data upon which they
are based. Because PEST does not ‘“create” any data, nor alter the specifications of any
simulation model (simply “adding to the value” of both of these), it is “transparent” from a
security point of view. ' -

No security devices (for example hardware locks) are required for the use of PEST.

84

&7

8. Data and Logical Model

PEST is designed to undertake complex mathematical computations according to algorithms
already described in detail herein. It is designed to work in conjunction with an existing model
to enhance the capabilities of that model in processing real-world data.

Issues concerned with data transfer in and out of PEST have been covered in detail in Section 4
of this document. All such data transfers take place through the medium of user-prepared ASCII
files, or ASCII files written by PEST for perusal by the user. Communications between PEST
and the model with which it is working will also take place through ASCI files, with the
protocol for these files being set by the model itself.

PEST does not exchange data with any external process other than the model, or with any
external instrumentation. Furthermore, the nature of the numerical tasks carried out by PEST and
the simulation model is such that intensive numerical computations, rather than the handling of
large volumes of data, are the focus of its calculations.

85

28

9. References

AP-S1.1Q, Rev. 2, ICN 2. Soﬁ‘ware Management. Washington, D.C.: U.S. Department of
Energy, Office of Civilian Radioactive Waste Management. ACC: MOL.19991214.0627.

Software Installation Test Plan for PEST Version 35 10289-ITP-3.5-00.

Software Requirements Document for PEST Version 3.5, 10289-RD-3.5-00.
Validation Test Plan for PEST Version 3.5, 10289-VTP-3.5-00.

Bard, Jonathon, 1974. Nonlinear parameter estimation. Academic Press, NY. 341p.

Cooley, R.L. and Naff, R.L., 1990. Regression modeling of ground-water flow: U.S. Geological
Survey Techniques in Water-Resources Investigations, book 3, chap B4, 232p.

Cooley, R.L. and Vecchia, A.V., 1987. Calculation of nonlinear confidence and prediction
intervals for ground-water flow models. Water Resources Bulletin. Vol. 23, No. 4, pp581-599. .

deGroot-Hedlin, C. and Constable, S., 1990. Occam’s inversion to generate smooth, two-
dimensional models from magnetotelluric data. Geophysics, Vol 55, No. 12.

Koch, K., 1988. Parameter Estimation and Hypothesis Testing in Linear Models. Springer-
Verlag, Berlin. 377p.

Mikhail, E. M., 1976. Observations and Least Squares. IEP, NY. 497p. *

Nash, J. C. and Walker-Smith, M., 1987. Nonlinear Parameter Estimation; an Integrated System
in Basic. Marcel Dekker Inc., Monticello, NY. 493p.

Vecchia, A.V. and Cooley, R.L., 1987. Simultaneous confidence and prediction intervals for
nonlinear regression models with application to a groundwater flow model. Water Resources
Research, vol. 23, no. 7, pp1237-1250.

Watermark Numerical Computing, 2002. PEST: Model-Independent Parameter Estimation.
User’s Manual for PEST Version 5.5.

86

29

Appendix: Conversion Plan

Users of version 3.5 of PEST should be notified of the existence of version 5.5 of PEST. All new
features of PEST 5.5 will be described in the upgraded User’s Manual (Watermark Numerical
Computing, 2002) to be released with this version.

PEST version 5.5 will be completely backwards compatible with previous versions of PEST.
Hence all PEST input files prepared for the use of version 3.5 will be read without error by
version 5.5. Also, it is not necessary to rerun calibration exercises carried out with previous
versions of PEST unless input data is modified or updated, or access to new PEST functionality
is required.

87

=5~
D

ele)

